
Inverse Problems

Inverse Problems 41 (2025) 015004 (28pp) https://doi.org/10.1088/1361-6420/ad9d73

Dynamic thresholding algorithm with
memory for linear inverse problems

Zhong-Feng Sun1, Yun-Bin Zhao2,∗, Jin-Chuan Zhou1

and Zheng-Hai Huang3

1 School of Mathematics and Statistics, Shandong University of Technology, Zibo,
Shandong, People’s Republic of China
2 Shenzhen International Center for Industrial and Applied Mathematics, SRIBD,
The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
3 School of Mathematics, Tianjin University, Tianjin, People’s Republic of China

E-mail: yunbinzhao@cuhk.edu.cn, zfsun@sdut.edu.cn, jinchuanzhou@sdut.edu.cn
and huangzhenghai@tju.edu.cn

Received 20 April 2024; revised 19 November 2024
Accepted for publication 11 December 2024
Published 20 December 2024

Abstract
The relaxed optimal k-thresholding pursuit (ROTP) is a recent algorithm for
linear inverse problems. This algorithm is based on the optimal k-thresholding
technique which performs vector thresholding and error metric reduction sim-
ultaneously. Although ROTP can be used to solve small to medium-sized linear
inverse problems, the computational cost of this algorithm is high when solv-
ing large-scale problems. By merging the optimal k-thresholding technique and
iterative method with memory as well as optimization with sparse search direc-
tions, we propose the so-called dynamic thresholding algorithm with memory
(DTAM), which iteratively and dynamically selects vector bases to construct
the problem solution. At every step, the algorithm uses more than one or all
iterates generated so far to construct a new search direction, and solves only the
small-sized quadratic subproblems at every iteration. Thus the computational
complexity of DTAM is remarkably lower than that of ROTP-type methods. It
turns out that DTAM can locate the solution of linear inverse problems if the
matrix involved satisfies the restricted isometry property. Experiments on syn-
thetic data, audio signal reconstruction and image denoising demonstrate that
the proposed algorithm performs comparably to several mainstream threshold-
ing and greedy algorithms, and it works faster than the ROTP-type algorithms
especially when the sparsity level of signal is relatively low.
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1. Introduction

A typical linear inverse problem is to reconstruct unknown data d ∈ Rn via some linear meas-
urements y ∈ Rm subject to noise effects:

y= Bd+ ν, (1.1)

where B ∈ Rm×n is a given measurement matrix with m≪ n, and ν ∈ Rm is a noise vector.
This problem arises in many scenarios, where the number of measurements m is much smaller
than the length of the target vector d. For instance, when using CT for medical diagnosis, it
is expected to use as little radiation dose as possible in order to reduce the impact of radi-
ation on the patient. Also, in the same and many other application scenarios, the target signal
often admits certain special structure that makes it possible to reconstruct the signal from the
underdetermined system (1.1). In fact, many natural signals and images can be sparsely repres-
ented under some orthogonal linear transforms (e.g. discrete wavelet transforms). As a result,
we may assume that the target data d can be represented as d=ΦTx, where Φ ∈ Rn×n is a
transform matrix and the vector x ∈ Rn is sparse (or compressible in the sense that it can be
approximated by a sparse vector). In such cases, reconstructing d via solving the linear inverse
problem (1.1) amounts to recovering a sparse (or compressible) vector x through the following
system:

y= Ax+ ν, (1.2)

where A= BΦT ∈ Rm×n is still called the measurement matrix. As the solution x of this prob-
lem is sparse, the problem above can be referred to as a sparse linear inverse problem. This
problem has a wide range of applications in such areas as image processing [25, 42], wireless
communication [6, 11, 26], sensor networks [9, 10], to name a few. The system (1.2) can be
reformulated as the sparse optimization problem

min
x∈Rn

{
∥y−Ax∥22 : ∥x∥0 ⩽ k

}
, (1.3)

where k is a given integer number reflecting the sparsity level of x, and ∥·∥0 denotes the number
of nonzero entries of a vector. For the convenience of discussion, we list the main abbreviations
used in the paper in table 1.

Thresholding is a large class of widely used algorithms for sparse optimization prob-
lems (1.3). This class of algorithms includes the hard thresholding [4, 5, 19, 24, 30, 36, 41],
optimal k-thresholding [31, 32, 37, 45, 47], soft thresholding [3, 6, 13, 15, 17, 28, 44], and
the recent NTP [48]. Although the hard thresholding selecting indices of a few largest mag-
nitudes of a vector can guarantee the iterates generated by the algorithm are feasible to (1.3), it
is generally not an optimal thresholding approach from the viewpoint of minimizing the error
metric ∥y−Ax∥22, as pointed out in [45]. Thus a more sophisticated data compression method
called the optimal k-thresholding was first introduced in [45], based on which the family of
optimal k-thresholding algorithms, termed ROTPω, were proposed in [45], where ω reflects
the times of data compression in every iteration. Although ROTPω is generally more stable and
robust for solving linear inverse problems than hard thresholding and greedy algorithms [45,
47], its computational cost remains high since the algorithm needs to solve quadratic optimiz-
ation subproblems in the course of iteration. To reduce the cost, some modifications of ROTPω
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Table 1. List of abbreviations.

Abbreviation Full name

DTAM Dynamic thresholding algorithm with memory
DWT Discrete wavelet transform
EDOMP Enhanced dynamic orthogonal matching pursuit [49]
gOMP Generalized orthogonal matching pursuit [40]
NTP Natural thresholding pursuit [48]
OMP Orthogonal matching pursuit [18, 38]
PGROTP Partial gradient relaxedoptimal k-thresholding pursuit [32]
PSNR Peak signal-to-noise ratio
RIC Restricted isometry constant
RIP Restricted isometry property
ROTP Relaxed optimal k-thresholding pursuit [45]
ROTPω ROTP with ω times of data compression at each iteration [45]
SNR Signal-to-noise ratio
SP Subspace pursuit [12]
StOMP Stagewise orthogonal matching pursuit [16]

using acceleration or linearization techniques have been proposed recently [21, 32, 37, 48]. For
instance, PGROTP [32] and the heavy-ball-based ROTP [37] were developed by incorporating
the partial gradient and heavy-ball acceleration into ROTP (ROTPω with ω= 1), respectively.
Numerical results indicate that PGROTP can be faster than ROTP2 [32]. However, PGROTP is
still time-consuming when solving large-scale problems. It is worth mentioning that the NTP
in [48], using linearization of quadratic subproblem, remarkably reduces the complexity of
ROTP-type algorithms. In addition, the stochastic counterpart of NTP was recently developed
in [21] for sparse optimization problems.

Except for thresholding algorithms, the greedy methods are also a popular class of
algorithms for solving sparse linear inverse problems. OMP is one of such greedy algorithms
[18, 38] which gradually identifies the support of solution to the problem by selecting only
one index in each iteration. The index selected by OMP corresponds to the largest absolute
component of the gradient of error metric, i.e. the objective function in (1.3). The OMP and
its modified versions were analyzed in such references as [8, 14, 34]. However, theoretical
and numerical results indicate that OMP tends to be inefficient as the sparsity level k becomes
large. The main reason for this might be that when k is relatively large and when the large
magnitudes are close to each other, there is no guarantee for a correct index being selected by
the OMP procedure, and many significant indices corresponding to large magnitudes in gradi-
ent are completely discarded at every iteration. This means most useful information conveyed
by the gradient of the current iterate is ignored in OMP procedure. Motivated by this obser-
vation, several modifications of OMP with different index selection criteria were introduced,
including gOMP [40], StOMP [16], EDOMP [49] and SP [12]. For instance, at every itera-
tion, gOMP picks a fixed number, K, of the largest magnitudes of gradient. However, such a
selection rule might result in a wrong index set especially when the gradient is s-sparse with
s<K since in such a case the algorithm have to pick more indices than necessary. On the
contrary, StOMP and EDOMP adopt certain dynamic index selection criteria whose purpose
is to efficiently use the information of significant gradient components. EDOMP is generally
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stable, robust and efficient for sparse signal recovery, although the convergence of EDOMP
has not yet established at present [49].

Inspired by the dynamic index selection strategies in StOMP [16] and EDOMP [49] and
iterative methods with memory [1, 27, 35], we propose a new algorithm called DTAM in this
paper. The algorithm is different from existing ones in three aspects: (i) the iterative search
direction in this method is a combination of the gradients of more than one or all iterates
generated so far by the algorithm instead of the only gradient for the current iterate. (ii) The
index selection in this algorithm is dynamic according to a rule defined by a generalized mean
function [46] evaluated at the current search direction with memory. It should be pointed out
that the generalized mean function is used for the first time to serve such a purpose. (iii) The
algorithm adopts a novel dimensionality reduction strategy based on the sparsity of iterative
point and search direction. The key idea here is to reduce a high-dimensional quadratic optim-
ization problem to a low-dimensional one whose dimension is at most twice of the sparsity
level of the solution to the linear inverse problem. We also carry out a rigorous analysis of
DTAM to establish an error bound which measures the distance between the solution of the
problem and iterates generated by the algorithm. The error bound is established under the RIP.
It implies that DTAM is guaranteed to locate the k-sparse solution of linear inverse problem if
the matrix satisfies the RIP of order 3k.Moreover, as a byproduct of our analysis, the conver-
gence of PGROTP with q̄= k is also obtained in this paper for the first time, which is given in
corollary 3.9. The numerical performances of DTAM and several existing algorithms includ-
ing PGROTP [32], NTP [48], StOMP [16], SP [12] and OMP [18, 38] are compared through
experiments on threes types of sparse linear inverse problems: The problems with synthetic
data, practical audio signal reconstruction and image denoising. Numerical results indicate that
the proposed algorithm does perform very well for solving linear inverse problems compared
with several existing algorithms, and it works faster than PGROTP.

The paper is organized as follows. In section 2, we introduce some useful inequalities, gen-
eralized mean functions, the PGROTP algorithm, and the new algorithm DTAM. The analysis
of DTAM is performed in section 3. Numerical results are reported in section 4, and the con-
clusions are given in last section.

2. Preliminary and algorithms

Some notations that will be used in the paper are summarized in table 2.

2.1. Basic inequalities

Let us first recall the RIC and RIP of an m× n matrix A with m< n.

Definition 2.1 ([7]). Given a matrix A ∈ Rm×n with m< n. The kth order RIC of A, denoted
by δk, is the smallest nonnegative number δ which obeys

(1− δ)∥x∥22 ⩽ ∥Ax∥22 ⩽ (1+ δ)∥x∥22 (2.1)

for all k-sparse vectors x ∈ Rn. Moreover, the matrix A is said to satisfy the RIP of order k if
δk < 1.

The following lemma is very useful for the analysis of DTAM.
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Table 2. List of notations.

Notation Definition

Rn
++ The positive orthant of Rn

N Index set {1,2, . . . ,n}
|Ω| Cardinality of the set Ω⊆ N
Ω Complement set of Ω⊆ N, i.e. Ω= N \Ω
supp(u) Support of u ∈ Rn, i.e. supp(u) = {i ∈ N : ui ̸= 0}
uΩ n-dimensional vector obtained from u ∈ Rn with entries (uΩ)i = ui

for i ∈ Ω and (uΩ)i = 0 for i ∈ Ω

|u| Absolute value of the vector u ∈ Rn, i.e. |u|= (|u1|, . . . , |un|)T
Lk(u) Index set of the k largest entries in magnitude of u ∈ Rn

Hk(u) Hard thresholding of u ∈ Rn, i.e. Hk(u) = uΩ where Ω= Lk(u)
∥ · ∥i ℓi-norm of a vector, 1⩽ i⩽+∞
u ◦ v Hadamard product of u and v in Rn, i.e. u ◦ v= (u1v1, . . . ,unvn)

T

e The vector of ones in Rn, i.e. e= (1, . . . ,1)T

Lemma 2.2 ([19, 45]). Let u ∈ Rn and v ∈ Rm be two vectors, s ∈ N be a positive integer and
W⊆ N be an index set.

(i) If |W∪ supp(u)|⩽ s, then ∥
(
(I−ATA)u

)
W
∥2 ⩽ δs∥u∥2.

(ii) If |W|⩽ s, then ∥
(
ATv
)
W
∥2 ⩽

√
1+ δs∥v∥2.

The next fundamental property of orthogonal projection can be found in [19, equation
(3.21)] and [45, p 49].

Lemma 2.3 ([19, 45]). Let x ∈ Rn be a vector satisfying y= Ax+ ν where ν ∈ Rm is a noise
vector. Let Ω⊆ N be an index set satisfying |Ω|⩽ k and

u∗ = argmin
u∈Rn

{
∥y−Au∥22 : supp(u)⊆ Ω

}
.

Then

∥u∗ − xS∥2 ⩽
1√

1− (δ2k)
2
∥(xS)Ω ∥2 +

√
1+ δk

1− δ2k
∥ν ′∥2,

where S := Lk(x) and ν ′ := ν+AxS.

We also need the following result taken from [47, lemma 4.1] concerning hard thresholding.

Lemma 2.4 ([47]). Let u,h ∈ Rn be two vectors and ∥h∥0 ⩽ k. Then

∥h−Hk (u)∥2 ⩽ ∥(u− h)S∪S∗ ∥2 + ∥(u− h)S∗\S ∥2,

where S := supp(h) and S∗ := supp(Hk(u)).

2.2. Generalized mean function

A generalized mean function defined in [46] will be used in the algorithm proposed in next
section. Let us state a result for generalized mean functions, which can be obtained directly
from [46, theorem 2.7].
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Lemma 2.5. Let Λ be an open interval in R and [0,1]⊂ Λ, and let θ ∈ Rk
++ be a given pos-

itive vector. Let Ψ,ϕi : Λ→ R, i = 1, . . . ,k be strictly increasing and twice continuously dif-
ferentiable, and let Ψ be convex and ϕi, i = 1, . . . ,k be strictly convex. Assume that there exist
constants τ and τi > 0, i = 1, . . . ,k such that for t ∈ Λ

τiϕi (t)ϕ
′ ′

i (t)⩾
[
ϕ

′

i (t)
]2
, τΨ(t)Ψ

′ ′
(t)⩽

[
Ψ

′
(t)
]2
.

If τ ⩾max1⩽i⩽k τi, then the generalized mean function

Γθ (z) = Ψ−1

(
k∑

i=1

θiϕi (zi)

)
, (2.2)

where z= (z1, . . .,zk)T ∈ Λk, is convex, strictly increasing and twice continuously
differentiable.

If Ψ = ϕ1 = · · ·= ϕk, (2.2) reduces to the mean function in [23]. Some specific examples
of generalized mean functions satisfying lemma 2.5 are given as follows.

Example 2.6. (i) Taking Λ = R, constant σ> 0 and Ψ(t) = ϕi(t) = et/σ (i = 1, . . . ,k),
we get

Γθ (z) = σ ln

(
k∑

i=1

θi e
zi/σ

)
, z ∈ Λk. (2.3)

(ii) Taking σ> 0, Λ = (−σ,+∞) and l> 1 as well as Ψ(t) = ϕi(t) = (t+σ)l (i = 1, . . . ,k),
one has

Γθ (z) =

(
k∑

i=1

θi (zi+σ)
l

)1/l

−σ, z ∈ Λk.

(iii) Taking σ > 0,Λ = (−σ,+∞), and Ψ(t) = (t+σ)l with 1< l⩽ 2 and ϕi(t) = ∆1,1(t+
σ) or ∆1,2(t+σ) (i = 1, . . . ,k), where ∆1,1 and ∆1,2 are the functions defined as

∆1,1
(̂
t
)
= t̂2/2− t̂+ ln

(̂
t+ 1

)
, ∆1,2

(̂
t
)
=

1
2

[(̂
t+ 1

)2 − (̂t+ 1
)−1 − 3̂t

]
with t̂ ∈ (0,+∞), one has

Γθ (z) =

(
k∑

i=1

θiϕi (zi)

)1/l

−σ, z ∈ Λk.

2.3. Algorithms

Before we state our algorithm, let us first recall the PGROTP algorithm in [32], which uses the
partial gradient to speed up the ROTP. However, PGROTP still has computational complexity
similar to that of ROTPω [32, 47]. It is worth mentioning that the convergence of PGROTP
was shown only for the case q̄⩾ 2k at present [32].
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Algorithm 1. Partial gradient relaxed optimal k-thresholding pursuit (PGROTP).

Input the data (A, y), integer number q̄⩾ k and initial point x0.
S1. At the current point xp, set up = xp+Hq̄(AT(y−Axp)).
S2. Generate the index set Sp+1 = Lk(u

p ◦wp) by solving the optimization problem

wp = arg min
w∈Rn

{
∥y−A(up ◦w)∥22 :

n∑
i=1

wi = k, 0⩽ w⩽ e

}
. (2.4)

S3. Compute the next iterate xp+1 by solving the orthogonal projection problem

xp+1 = arg min
x∈Rn

{
∥y−Ax∥22 : supp(x)⊆ Sp+1

}
.

Repeat S1–S3 until a certain stopping criterion is met.

Algorithm 2. Dynamic thresholding algorithm with memory (DTAM).

Input data (A,y,k) and the parameters γ ∈ (0,1] and β ∈ [0,1). Input a generalized mean function of
the form (2.5) with given parameter θ ∈ Rk

++. Set the initial point x
0 = 0.

S1. Let r p =
∑p

j=0β
p−jr̂j, where r̂j = AT(y−Axj) for j = 0, . . . ,p. Let Ωi = Li(r p), i = 1, . . . ,k. Set

up = xp+(r p)Ωq
, (2.6)

where q is determined as

q=min

{
i : f

(
|r p(i,k)|
∥r p(k,k)∥2

)
⩾ γf

(
|r p(k,k)|
∥r p(k,k)∥2

)
, i = 1, . . . ,k

}
, (2.7)

in which r p(i,k), i = 1, . . .,k are k-dimensional vectors whose entries are those of (r p)Ωi supported onΩk,
i.e.

r p(i,k) =

{(
(r p)Ωi

)
j
: j ∈ Ωk

}
.

S2. Let Vp = supp(xp)∪Ωq. If |Vp|⩽ k, set Sp+1 = Vp. Otherwise, if |Vp|> k, set Sp+1 = Lk(u
p ◦wp),

where wp is the solution to the problem

arg min
w∈Rn

{
∥y−A(up ◦w)∥22 : wj = 0 for j /∈ Vp,

∑
i∈Vp

wi = k, 0⩽ w⩽ e

}
. (2.8)

S3. Let

xp+1 = arg min
x∈Rn

{
∥y−Ax∥22 : supp(x)⊆ Sp+1

}
. (2.9)

Repeat S1–S3 until a certain stopping criterion is met.

The dynamic index selection rules in StOMP [16] and EDOMP [49] aim to efficiently use
the information provided by the gradient-based search direction to predict the problem solu-
tion. The iterative method with memory aims to use more than one or all generated iterates to
obtain a search direction. Moreover, as shown in PGROTP, using part of the search direction
may help lower the dimension of quadratic optimization subproblem in ROTP-type method.
Thus by merging these techniques, we propose the so-called DTAM for linear inverse prob-
lems, in which a new dynamic index selection strategy based on the following generalized
mean function is adopted:

f(z) := Γθ (z)−Γθ (0) , (2.5)

7
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where Γθ(z) is given by (2.2).
At the first step S1 of DTAM, the vector r p = r̂p+βr̂p−1 + · · ·+βpr̂0 is the combination of

negative gradients of ∥y−Ax∥22/2 at the generated iterates. As the coefficients βℓ, ℓ= 0, , . . .,p
are decaying as ℓ increases, a more recent iterate is allocated a weight larger than their pre-
decessors. For this reason, β is referred to as a forgetting factor. When β = 0, the vector rp

reduces to the negative gradient at the current point xp. The search direction (r p)Ωq adopted
in (2.6) is a hard thresholding of rp, i.e. (r p)Ωq =Hq(r p). The number q is uniquely determ-
ined by the index selection rule (2.7) which is dynamically changed during iteration. Note
that the inequality (2.7) is always satisfied for i = k, and hence there exists a smallest i such
that the inequality holds. Since up = xp+(r p)Ωq , we have supp(up)⊆ supp(xp)∪Ωq. When
supp(up) ̸= supp(xp)∪Ωq, performing the relaxed optimal k-thresholding of up with index
set Vp = supp(xp)∪Ωq (i.e. solving the convex optimization problem (2.8)) might reduce the
objective function in (2.8) more than the case Vp = supp(up). It is well known that such reduc-
tion might help speed up the algorithm and enhance the convergence of the algorithm. There
are several choices of the stopping criteria for DTAM. For instance, we may stop the algorithm
after being performed a prescribed number of iterations, or we may stop the algorithm when
∥y−Axp∥2 ⩽ ε, where ε is a given tolerance.

Remark 2.7. We can compare the computational complexity of DTAM and ROTP-type
algorithms. The complexity of ROTPω and PGROTP in each iteration isO(mn+m3 + n3.5Ln)
[32, 47], where Ln depending on n is the size of the problem data encoding in binary [29]. The
main cost of the ROTP-type algorithms is solving the quadratic optimization problem (2.4)
which requires O(n3.5Ln) flops based on an interior-point algorithm [29, 39, 43]. It is evident
that the actual dimension of (2.8) is |Vp|which is atmost 2k, and thus solving (2.8) only requires
O(k3.5L2k) flops. Therefore, the complexity of DTAMwith a simple generalized mean function
is about O(mn+m3 + k3.5L2k) in each iteration, which is much lower than that of ROTP-type
algorithms.

Remark 2.8. A big difference of DTAM from related existing methods lies in the index selec-
tion rule in which the generalized mean function is used. The purpose of using the generalized
mean function is to provide a relatively more general framework of the algorithm so that the
theoretical result can be established in broader settings and more alternative index selection
rules can be used for implementation. To see how the choice of generalized mean functions
might influence the performance of the algorithm, let us first establish the solution error bound
in the next section and then make a further discussion in remark 3.6 on this issue. While the
DTAM using generalized mean functions for index selection instead of the thresholding rule
as in EDOMP [49] (to which the error bound of EDOMP has not yet established so far in the
literature), we can establish the solution error bound (including the convergence) of DTAM
under suitable conditions, as shown in theorem 3.5 in the next section.

3. Error bound of DTAM

The purpose of this section is to establish the solution error bound of DTAM under the RIP
of order 3k. In other words, we show the convergence of DTAM via estimating the distance
between the solution of linear inverse problem and the iterates generated by DTAM. First, we
need to establish several technical results. The first one displays the relation of ∥(r p)Ωq∥2 and
∥(r p)Ωk∥2, which is essential to bound the term ∥(up− xS)S∥2 in order to eventually obtain the
main result in this section.

8
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Lemma 3.1. Let f(z) = Γθ(z)−Γθ(0) where Γθ(z) is a generalized mean function satisfying
lemma 2.5. Let γ,q,r p,Ωq and Ωk be given as in DTAM. Then

∥(r p)Ωq
∥2 ⩾ g(γ)∥(r p)Ωk

∥2, (3.1)

where

g(γ) =
2γc√

∥∇f(0)∥22 + 2γcλ∗ + ∥∇f(0)∥2
< 1 (3.2)

with

c := min
1⩽i⩽k

∂f
∂zi

(0)> 0, λ∗ := max
z∈[0,1]k

λmax (z)⩾ 0,

where λmax(z) is the largest eigenvalue of the Hessian matrix ∇2f(z).

Proof. It follows from lemma 2.5 that f(z) = Γθ(z)−Γθ(0) is strictly increasing, twice con-
tinuously differentiable and convex in Λk ⊇ [0,1]k. Hence, the largest eigenvalue λmax(z) of
the Hessian matrix∇2f(z) is continuous in Λk. It is easy to check that

f(0) = 0,
∂f
∂zi

(0)> 0 for 1⩽ i⩽ k, ∇2f(z)⪰ 0 for z ∈ Λk. (3.3)

Therefore,

c= min
1⩽i⩽k

∂f
∂zi

(0)> 0, λ∗ = max
z∈[0,1]k

λmax (z)⩾ 0.

Let r p(i,k), i = 1, . . .,k be defined as in DTAM and denote by s := 1/∥r p(k,k)∥2. By the Taylor

expansion, there exists ξ ∈ [0,1]k such that

f
(
s|r p(q,k)|

)
= f(0)+ s|r p(q,k)|

T∇f(0)+ s2

2
|r p(q,k)|

T∇2f(ξ) |r p(q,k)|

⩽ s∥∇f(0)∥2∥r p(q,k)∥2 +
s2

2
λ∗∥r p(q,k)∥

2
2. (3.4)

On the other hand, since f (z) is convex, it follows from (3.3) that

f
(
s|r p(k,k)|

)
⩾ f(0)+ s|r p(k,k)|

T∇f(0)⩾ sc∥r p(k,k)∥1 ⩾ sc∥r p(k,k)∥2 = c. (3.5)

From (2.7), we have f(s|r p(q,k)|)⩾ γf(s|r p(k,k)|). This together with (3.4) and (3.5) implies that

s2

2
λ∗∥r p(q,k)∥

2
2 + s∥∇f(0)∥2∥r p(q,k)∥2 − γc⩾ 0.

By setting t̃= s∥r p(q,k)∥2 which is less than or equal to 1, the above inequality is written as

λ∗

2

(
t̃
)2

+ ∥∇f(0)∥2̃t− γc⩾ 0.

9
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Case 1. λ∗ = 0. In this case, the above inequality reduces to ∥∇f(0)∥2̃t− γc⩾ 0, i.e. t̃⩾
γc

∥∇f(0)∥2
= g(γ) for this case. Thus the inequality (3.1) holds in this case.

Case 2. λ∗ > 0. Since ∥∇f(0)∥2 ⩾min1⩽i⩽k
∂f
∂zi

(0) = c, we see that 0< γ ⩽ 1< (λ∗ +

2∥∇f(0)∥2)/(2c) under which the quadratic equation λ∗
2 t

2 + ∥∇f(0)∥2t− γc= 0 has a unique
positive root g(γ) in (0, 1) given as (3.2). This implies that t̃ ∈ [g(γ),1] which is exactly the
inequality (3.1) by noting that ∥r p(q,k)∥2 = ∥(r p)Ωq∥2 and ∥r p(k,k)∥2 = ∥(r p)Ωk∥2.

We now estimate the upper bound of ∥(up− xS)S∥2 which is used to establish the error
bound for DTAM, as shown in theorem 3.5.

Lemma 3.2. Let x ∈ Rn satisfy that y= Ax+ ν where ν is a noise vector. Denote by S= Lk(x)
and ν ′ := y−AxS. Then the vectors up and xj, j = 0, . . . ,p generated by DTAM satisfy that

∥(up− xS)S ∥2 ⩽ C1Qp+βQp−1 +
C2

1−β
∥ν ′∥2, (3.6)

where

Qi :=
i∑

j=0

βi−j∥xj− xS∥2 with i = p− 1,p (3.7)

and C1 and C2 are constants given as

C1 =
√
2δ3k+

√
1− [g(γ)]2 (1+ δ3k) , C2 =

√
1+ δ2k

(√
2+

√
1− [g(γ)]2

)
, (3.8)

where g(γ) ∈ (0,1) is given by (3.2).

Proof. From the definition of up in (2.6), we have

∥(up− xS)S ∥2 = ∥(xp− xS+ r p)S− (r p)S\Ωq
∥2

⩽ ∥(xp− xS+ r p)S ∥2 + ∥(r p)S\Ωq
∥2, (3.9)

where the equality follows from the fact that S∩Ωq = S \ (S \Ωq). Since r p =
∑p

j=0β
p−jr̂j

and S \Ωq = (S \Ωk)∪ [(Ωk \Ωq)∩ S], the terms on the right hand of (3.9) can be bounded
as

∥(xp− xS+ r p)S ∥2 =

∥∥∥∥∥∥
p∑

j=0

βp−j
(
xj− xS+ r̂j

)
S
−

p−1∑
j=0

βp−j
(
xj− xS

)
S

∥∥∥∥∥∥
2

⩽
p∑

j=0

βp−j∥
(
xj− xS+ r̂j

)
S
∥2 +

p−1∑
j=0

βp−j∥xj− xS∥2 (3.10)

and

∥(r p)S\Ωq
∥2 ⩽ ∥(r p)S\Ωk

∥2 + ∥(r p)(Ωk\Ωq)∩S ∥2 ⩽ ∥(r p)S\Ωk
∥2 + ∥(r p)Ωk\Ωq

∥2. (3.11)

Since Ωk = Lk(r p) and |S|= k, we get ∥(r p)S∥22 ⩽ ∥(r p)Ωk∥22. Eliminating the contribution of
S∩Ωk, we have

∥(r p)S\Ωk
∥2 ⩽ ∥(r p)Ωk\S ∥2. (3.12)

10
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From S3 in DTAM, we see that xj is the solution of the quadratic optimization problem

min
x∈Rn

{
∥y−Ax∥22 : supp(x)⊆ Sj

}
for j = 1, . . . ,p. Thus the first-order optimality condition implies that
(r̂j)Sj = 0, j = 1, . . . ,p, where r̂j represents the negative gradient of ∥y−Ax∥22/2 at xj.
Since supp(xj)⊆ Sj for j = 1, . . . ,p and x0 = 0, we claim that supp(xj)∩ supp(r̂j) = ∅ for
j = 0, . . . ,p, i.e.(

r̂j
)
supp(xj)

= 0,
(
xj
)
supp(̂rj)

= 0, j = 0, . . . ,p, (3.13)

which implies that

∥(r p)Ωk\S ∥2 =

∥∥∥∥∥∥
p∑

j=0

βp−j
(
r̂j
)
Ωk\S

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
p∑

j=0

βp−j
(
r̂j
)
supp(̂rj)∩Ωk\S

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
p∑

j=0

βp−j
(
xj− xS+ r̂j

)
supp(̂rj)∩Ωk\S

∥∥∥∥∥∥
2

⩽
p∑

j=0

βp−j∥
(
xj− xS+ r̂j

)
Ωk\S

∥2. (3.14)

Due to (Ωk \ S)∪ S=Ωk ∪ S and (Ωk \ S)∩ S= ∅, one has

∥
(
xj− xS+ r̂j

)
S
∥2 + ∥

(
xj− xS+ r̂j

)
Ωk\S

∥2

⩽
√
2
√
∥(xj− xS+ r̂j)S ∥22 + ∥(xj− xS+ r̂j)Ωk\S ∥

2
2

=
√
2∥
(
xj− xS+ r̂j

)
Ωk∪S

∥2,

which together with (3.9)–(3.14) implies that

∥(up− xS)S ∥2 ⩽
√
2

p∑
j=0

βp−j∥
(
xj− xS+ r̂j

)
Ωk∪S

∥2

+

p−1∑
j=0

βp−j∥xj− xS∥2 + ∥(r p)Ωk\Ωq
∥2. (3.15)

Note that (Ωk \Ωq)∪Ωq =Ωk and (Ωk \Ωq)∩Ωq = ∅. We have

∥(r p)Ωk\Ωq
∥22 + ∥(r p)Ωq

∥22 = ∥(r p)Ωk
∥22.

By lemma 3.1, we have

∥(r p)Ωk\Ωq
∥2 ⩽

√
1− [g(γ)]2∥(r p)Ωk

∥2, (3.16)

11
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in which the term ∥(r p)Ωk∥2 can be bounded as

∥(r p)Ωk
∥2 =

∥∥∥∥∥∥
p∑

j=0

βp−j
(
xj− xS+ r̂j

)
Ωk

−
p∑

j=0

βp−j
(
xj− xS

)
Ωk

∥∥∥∥∥∥
2

⩽
p∑

j=0

βp−j∥
(
xj− xS+ r̂j

)
Ωk

∥2 +
p∑

j=0

βp−j∥xj− xS∥2

⩽
p∑

j=0

βp−j∥
(
xj− xS+ r̂j

)
Ωk∪S

∥2 +
p∑

j=0

βp−j∥xj− xS∥2. (3.17)

From (3.15)–(3.17), it is easy to obtain that

∥(up− xS)S ∥2 ⩽
(√

2+
√
1− [g(γ)]2

) p∑
j=0

βp−j∥
(
xj− xS+ r̂j

)
Ωk∪S

∥2

+

p−1∑
j=0

βp−j∥xj− xS∥2 +
√
1− [g(γ)]2

p∑
j=0

βp−j∥xj− xS∥2. (3.18)

Since r̂j = AT(y−Axj) and y= AxS+ ν ′, we have

xj− xS+ r̂j =
(
I−ATA

)(
xj− xS

)
+ATν ′, j = 0, . . . ,p. (3.19)

By using (3.19) and triangle inequality, we see that for each j = 0, . . . ,p,

∥
(
xj− xS+ r̂j

)
Ωk∪S

∥2 ⩽∥
[(
I−ATA

)(
xj− xS

)]
Ωk∪S

∥2 + ∥
(
ATν ′)

Ωk∪S
∥2

⩽δ3k∥xj− xS∥2 +
√
1+ δ2k∥ν ′∥2, (3.20)

where the last inequality follows from lemma 2.2 with |supp(xj− xS)∪ (Ωk ∪ S)|⩽ 3k and
|Ωk ∪ S|⩽ 2k. Inserting (3.20) into (3.18) yields

∥(up− xS)S ∥2 ⩽
(√

2+
√

1− [g(γ)]2
)δ3k

p∑
j=0

βp−j∥xj− xS∥2 +
√
1+ δ2k
1−β

∥ν ′∥2


+

p−1∑
j=0

βp−j∥xj− xS∥2 +
√

1− [g(γ)]2
p∑

j=0

βp−j∥xj− xS∥2,

which is (3.6) by setting Qp−1,Qp,C1 and C2 as (3.7) and (3.8).

We need one more technical result before showing the main result.

Lemma 3.3. For any given γ ∈ (0,1], let g(γ) be given by (3.2). Then the function

G(t) =
1

1− t

[
√
2t+ t

√
5+ t
1+ t

+
√
1− (g(γ))2(1+ t)

]
− 1, t ∈ [0,1) (3.21)

is strictly increasing and has a unique root, denoted by δ(γ), in (0,1).

12
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Proof. Note that t
1−t and

1+t
1−t are strictly increasing in [0,1) and that

1
1− t

· 1√
1+ t

=
1√
1− t

· 1√
1− t2

(3.22)

is strictly increasing in [0,1), so is t
1−t

√
5+t
1+t .Thus the functionG(t) in (3.21) is strictly increas-

ing in [0,1) for any given γ ∈ (0,1]. For a fixed γ ∈ (0,1], G(t) is continuous function over
[0,1) satisfying that G(0) =

√
1− [g(γ)]2 − 1< 0 and limt→1−G(t) = +∞. Thus, G(t) = 0

has a unique root in (0,1), denoted by δ(γ).

Remark 3.4. Compared with the analysis of related algorithms, the main difficulty in the ana-
lysis of this paper (due to appearance of generalized mean functions) is to establish some new
fundamental technical results that are used to show the main result. Lemmas 3.1 and 3.2 are
among such technical results. In lemma 3.1, we establish the relation of ∥(r p)Ωq∥2 (q⩽ k)
and ∥(r p)Ωk∥2, which is rooted on the convexity and monotonicity of the generalized mean
function. Furthermore, with the aid of lemma 3.1, we establish in lemma 3.2 the upper bound
of ∥(up− xS)S∥2 in terms of the linear combination of ∥xj− xS∥2, j = 0, . . . ,p. This bound is
essential to establish the solution error bound of DTAMwhich are summarized in the theorem
below. Moreover, as a byproduct of our analysis (see corollary 3.9 for details), we can also
establish the error bound of PGROTP for the case q̄= k, which has not obtained based on the
analysis in [32].

The main result for DTAM is stated as follows.

Theorem 3.5. Let x ∈ Rn be the solution to the linear inverse problem y= Ax+ ν where ν is a
noise vector. For any given γ ∈ (0,1], suppose that the RIC, δ3k, of matrix A and the forgetting
factor β satisfy that

δ3k < δ (γ) , 0⩽ β <
2ϱ̃

δ2k+

√
(δ2k)

2
+ 4ϱ̃(1− δ2k)

− ϱ̃, (3.23)

where δ(γ) ∈ (0,1) is given in lemma 3.3 and

ϱ̃ :=
1

1− δ2k

(
C1 + δ3k

√
5+ δ2k
1+ δ2k

)
< 1 (3.24)

with C1 is given by (3.8). Then the sequence {xp} generated by DTAM satisfies

∥xp− xS∥2 ⩽ ϱp∥x0 − xS∥2 +
Cβ

1− ϱ
∥ν ′∥2, (3.25)

where S= Lk(x), ν ′ = AxS+ ν = y−AxS, and

ϱ := ϱ̃+β+
β

(1− δ2k)(ϱ̃+β)
< 1,

Cβ :=
1

1− δ2k

[
C2 +

√
5+ δ2k

1−β
+

2√
1+ δ2k

+
√
1+ δk

]
, (3.26)

13
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in which C2 is given by (3.8).

Proof. The proof is partitioned into the three parts.
Part I. We first show that under the condition of the theorem, the constants ϱ̃,ϱ in (3.24)

and (3.26) are smaller than 1, and that the range forβ in (3.23) is well-defined.
In fact, since the function in (3.22) is strictly increasing in [0,1), from the fact δ2k ⩽ δ3k <

δ(γ)< 1, we immediately see that

1
1− δ2k

· 1√
1+ δ2k

⩽ 1
1− δ3k

· 1√
1+ δ3k

. (3.27)

It follows from (3.8), (3.24) and lemma 3.3 that

ϱ̃⩽ G(δ3k)+ 1< G(δ (γ))+ 1= 1,

where the second inequality follows from the fact that G(t) is strictly increasing in [0,1) and
the equality follows from G(δ(γ)) = 0. Since ϱ̃ < 1 and δ2k < 1, we have

2ϱ̃

δ2k+

√
(δ2k)

2
+ 4ϱ̃(1− δ2k)

>
2ϱ̃

δ2k+

√
(δ2k)

2
+ 4(1− δ2k)

=
2ϱ̃

δ2k+

√
(2− δ2k)

2
= ϱ̃.

Thus the range forβ in (3.23) is well-defined. By setting ζ := 1
1−δ2k

(> 1), the second inequality
in (3.23) can be written as

0⩽ β <

(√
(2ϱ̃+ ζ − 1)2 + 4ϱ̃(1− ϱ̃)− (2ϱ̃+ ζ − 1)

)
/2.

This implies that

β2 +(2ϱ̃+ ζ − 1)β− ϱ̃(1− ϱ̃)< 0,

which is equivalent to ϱ < 1, as sated in (3.26).
Part II. We now estimate the term ∥xp+1 − xS∥2 in terms of ∥(xS− up)Vp\S∥2 and ∥(xS−

up)S∥2. The upper bound for this term is key to establishing the desired error bound in (3.25).
Case 1. |Vp| > k. In this case, Sp+1 = Lk(up ◦wp)⊂ Vp and up, wp are given by (2.6)

and (2.8) respectively. Set u∗ = xp+1, Ω= Sp+1 and S= Lk(x) in lemma 2.3, we get

∥xp+1 − xS∥2 ⩽
1√

1− (δ2k)
2
∥(xS)Sp+1 ∥2 +

√
1+ δk

1− δ2k
∥ν ′∥2. (3.28)

Since supp(Hk(up ◦wp))⊆ Sp+1, it follows that

∥xp+1 − xS∥2 ⩽
1√

1− (δ2k)
2
∥(Hk (u

p ◦wp)− xS)Sp+1 ∥2 +
√
1+ δk

1− δ2k
∥ν ′∥2

⩽ 1√
1− (δ2k)

2
∥Hk (u

p ◦wp)− xS∥2 +
√
1+ δk

1− δ2k
∥ν ′∥2. (3.29)

14
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Now, we can bound the term ∥xS−Hk(up ◦wp)∥2 by using ∥(xS− up)Vp\S∥2, ∥(xS− up)S∥2
and ∥ν ′∥2. By lemma 2.4, we have

∥xS−Hk (u
p ◦wp)∥2 ⩽ ∥(xS− up ◦wp)S∪Sp+1 ∥2 + ∥(xS− up ◦wp)Sp+1\S ∥2. (3.30)

Note that y= AxS+ ν ′ with ν ′ = AxS+ ν and supp(up)⊆ Vp. Using the triangle inequality
leads to

∥y−A(up ◦wp)∥2
= ∥A(xS− up ◦wp)S∪Sp+1 +A(xS− up ◦wp)Vp\(S∪Sp+1) + ν ′∥2
⩾ ∥A(xS− up ◦wp)S∪Sp+1 ∥2 −∥A(xS− up ◦wp)Vp\(S∪Sp+1) ∥2 −∥ν ′∥2

⩾
√
1− δ2k∥(xS− up ◦wp)S∪Sp+1 ∥2

−
√
1+ δ2k∥(xS− up ◦wp)Vp\(S∪Sp+1) ∥2 −∥ν ′∥2,

where the last inequality follows from (2.1) with |S∪ Sp+1|⩽ 2k and |Vp \ (S∪ Sp+1)|⩽ 2k.
Thus

∥(xS− up ◦wp)S∪Sp+1 ∥2 ⩽
√

1+ δ2k
1− δ2k

∥(xS− up ◦wp)Vp\(S∪Sp+1) ∥2

+
1√

1− δ2k
(∥y−A(up ◦wp)∥2 + ∥ν ′∥2) . (3.31)

Due to (xS)Vp\(S∪Sp+1) = (xS)Sp+1\S = 0 and 0⩽ wp ⩽ e, we obtain

∥(xS− up ◦wp)Vp\(S∪Sp+1) ∥2 = ∥ [(xS− up) ◦wp]Vp\(S∪Sp+1) ∥2
⩽ ∥(xS− up)Vp\(S∪Sp+1) ∥2

and

∥(xS− up ◦wp)Sp+1\S ∥2 = ∥ [(xS− up) ◦wp]Sp+1\S ∥2 ⩽ ∥(xS− up)Sp+1\S ∥2.

Combining the two inequalities above with (3.30) and (3.31) yields

∥xS−Hk (u
p ◦wp)∥2 ⩽

√
1+ δ2k
1− δ2k

∥(xS− up)Vp\(S∪Sp+1) ∥2 + ∥(xS− up)Sp+1\S ∥2

+
1√

1− δ2k
(∥y−A(up ◦wp)∥2 + ∥ν ′∥2) . (3.32)

We now further estimate the term ∥y−A(up ◦wp)∥2.Note that Sp+1 ⊂ Vp and |S|= |Sp+1|= k.
Let ŵ ∈ {0,1}n be a k-sparse vector in the feasible set of the problem (2.8) such that ŵi = 1
for all i ∈ Vp ∩ S and ŵj = 0 for all j ∈ Vp \ (Sp+1 ∪ S). Then

∥y−A(up ◦wp)∥2 ⩽∥y−A(up ◦ ŵ)∥2 ⩽ ∥A(xS− up ◦ ŵ)∥2 + ∥ν ′∥2
⩽
√
1+ δ2k∥xS− up ◦ ŵ∥2 + ∥ν ′∥2, (3.33)
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where the first inequality is due to wp being the optimal solution to (2.8), the second inequality
follows from y= AxS+ ν ′, and the third follows from (2.1) since xS− up ◦ ŵ is (2k)-sparse.
Note that

(up ◦ ŵ)Vp∩S = (up)Vp∩S , ŵVp\S = ŵSp+1\S

and supp(up)⊆ Vp and (xS)Sp+1\S = 0. We deduce that

∥xS− up ◦ ŵ∥2 = ∥xS− (up)Vp∩S− up ◦ ŵVp\S∥2
= ∥xS− (up)S+(xS− up) ◦ ŵSp+1\S∥2
⩽ ∥(xS− up)S ∥2 + ∥(xS− up)Sp+1\S ∥2. (3.34)

Inserting (3.34) into (3.33) leads to

∥y−A(up ◦wp)∥2 ⩽
√
1+ δ2k

(
∥(xS− up)S ∥2 + ∥(xS− up)Sp+1\S ∥2

)
+ ∥ν ′∥2. (3.35)

Merging (3.32) with (3.35) leads to

∥xS−Hk (u
p ◦wp)∥2

⩽
√

1+ δ2k
1− δ2k

∥(xS− up)Vp\(S∪Sp+1) ∥2 +

(√
1+ δ2k
1− δ2k

+ 1

)
∥(xS− up)Sp+1\S ∥2

+

√
1+ δ2k
1− δ2k

∥(xS− up)S ∥2 +
2√

1− δ2k
∥ν ′∥2. (3.36)

Denote by

∆1 := ∥(xS− up)Vp\(S∪Sp+1) ∥2, ∆2 := ∥(xS− up)Sp+1\S ∥2

and ∆ := ∥(xS− up)Vp\S∥2. Note that Vp \ S= [Vp \ (S∪ Sp+1)]∪ (Sp+1 \ S) and [Vp \ (S∪
Sp+1)]∩ (Sp+1 \ S) = ∅. We have ∆2

1 +∆2
2 =∆2. Hence, for any given number a,b> 0, we

have

a∆1 + b∆2 ⩽
√
b2 + a2

√
∆2

1 +∆2
2 =

√
b2 + a2∆. (3.37)

In particular, if b= a+ 1, then (3.37) becomes

a∆1 +(a+ 1)∆2 ⩽
√

(a+ 1)2 + a2∆⩽
√

3a2 + 2∆. (3.38)

By setting a=
√

1+δ2k
1−δ2k

in (3.38), we see that (3.36) becomes

∥xS−Hk (u
p ◦wp)∥2

⩽
√

5+ δ2k
1− δ2k

∥(xS− up)Vp\S ∥2 +

√
1+ δ2k
1− δ2k

∥(xS− up)S ∥2 +
2√

1− δ2k
∥ν ′∥2.
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Substituting this into (3.29) leads to

∥xp+1 − xS∥2 ⩽
1

1− δ2k

(√
5+ δ2k
1+ δ2k

∥(xS− up)Vp\S ∥2 + ∥(xS− up)S ∥2

)

+
1

1− δ2k

(
2√

1+ δ2k
+
√
1+ δk

)
∥ν ′∥2. (3.39)

Case 2. |Vp| ⩽ k. In this case, supp(up)⊆ Vp = Sp+1, and hence (up)Sp+1 = 0. Thus,

∥(xS)Sp+1 ∥2 = ∥(xS)S\Sp+1 ∥2 = ∥(up− xS)S\Sp+1 ∥2 ⩽ ∥(up− xS)S ∥2. (3.40)

Substituting (3.40) into (3.28), we have

∥xp+1 − xS∥2 ⩽
1√

1− (δ2k)
2
∥(up− xS)S ∥2 +

√
1+ δk

1− δ2k
∥ν ′∥2.

Compared with (3.39), the inequality (3.39) remains valid for the case |Vp|⩽ k.
Part III. We now further establish the error bound (3.25) via the mathematical induction.

(i) Clearly, (3.25) holds for p= 0.
(ii) For p⩾ 1, assume that

∥xj− xS∥2 ⩽ ϱj∥x0 − xS∥2 +
Cβ

1− ϱ
∥ν ′∥2 (3.41)

holds for j = 0, . . . ,p. We need to show that (3.41) holds for j = p+ 1. Similar to (3.6),
the upper bound of ∥(xS− up)Vp\S∥2 can be determined in terms of Qp and ∥ν ′∥2. By the
definition of up in (2.7) and noting that Vp = supp(xp)∪Ωq and r p =

∑p
j=0β

p−jr̂j, we
obtain

∥(up− xS)Vp\S ∥2 =

∥∥∥∥∥∥
(
xp+(r̂p)Ωq

− xS
)
Vp\S

+

p−1∑
j=0

βp−j
(
r̂j
)
Ωq\S

∥∥∥∥∥∥
2

. (3.42)

From (3.13), we see that (r̂p)Ωq = (r̂p)Vp and (r̂j)Ωq\S = (xj− xS+ r̂j)supp(̂rj)∩Ωq\S. It follows
from (3.42) that

∥(up− xS)Vp\S ∥2 =

∥∥∥∥∥∥(xp+ r̂p− xS)Vp\S+
p−1∑
j=0

βp−j
(
xj− xS+ r̂j

)
supp(̂rj)∩Ωq\S

∥∥∥∥∥∥
2

⩽
∥∥∥(xp+ r̂p− xS)Vp\S

∥∥∥
2
+

p−1∑
j=0

βp−j
∥∥∥(xj− xS+ r̂j

)
Ωq\S

∥∥∥
2
. (3.43)

Similar to (3.20), replacing the index set Ωk ∪ S with Vp \ S and Ωq \ S respectively, we obtain
that

∥(xp− xS+ r̂p)Vp\S ∥2 ⩽ δ3k∥xp− xS∥2 +
√
1+ δ2k∥ν ′∥2
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and

∥
(
xj− xS+ r̂j

)
Ωq\S

∥2 ⩽ δ3k∥xj− xS∥2 +
√
1+ δ2k∥ν ′∥2, j = 0, . . . ,p− 1.

Combining the two inequalities above with (3.43) leads to

∥(up− xS)Vp\S ∥2 ⩽ δ3kQp+

√
1+ δ2k
1−β

∥ν ′∥2, (3.44)

whereQp is given by (3.7). With the aid of (3.6) and (3.44), the inequality (3.39) can be written
further as

∥xp+1 − xS∥2 ⩽
1

1− δ2k

[(
C1 + δ3k

√
5+ δ2k
1+ δ2k

)
Qp+βQp−1

]
+Cβ∥ν ′∥2

=ϱ̃Qp+
β

1− δ2k
Qp−1 +Cβ∥ν ′∥2, (3.45)

where ϱ̃, Cβ are given by (3.24) and (3.26), respectively. Inserting (3.41) into (3.7) leads to

Qi ⩽
i∑

j=0

βi−jϱj∥x0 − xS∥2 +
Cβ

(
1−βi+1

)
(1− ϱ)(1−β)

∥ν ′∥2

⩽ ϱi
1− (β/ϱ)

i+1

1−β/ϱ
∥x0 − xS∥2 +

Cβ

(1− ϱ)(1−β)
∥ν ′∥2

⩽ ϱi+1

ϱ−β
∥x0 − xS∥2 +

Cβ

(1− ϱ)(1−β)
∥ν ′∥2 (3.46)

for i = p− 1,p, in which the condition β < ϱ < 1 is used and ϱ is given by (3.26).
Substituting (3.46) into (3.45) yields

∥xp+1 − xS∥2 ⩽ϱ̃

(
ϱp+1

ϱ−β
∥x0 − xS∥2 +

Cβ

(1− ϱ)(1−β)
∥ν ′∥2

)
+

β

1− δ2k

(
ϱp

ϱ−β
∥x0 − xS∥2 +

Cβ

(1− ϱ)(1−β)
∥ν ′∥2

)
+Cβ∥ν ′∥2

⩽
(
ϱϱ̃+

β

1− δ2k

)
ϱp

ϱ−β
∥x0 − xS∥2

+

[(
ϱ̃+

β

1− δ2k

)
1

1−β
+ 1− ϱ

]
Cβ

1− ϱ
∥ν ′∥2. (3.47)

To simplify (3.47), we need to estimate the coefficients of ∥x0 − xS∥2 and ∥ν ′∥2. Using the
definition of ϱ in (3.26), we have

ϱ⩾ϱ̃+β+
2β

(1− δ2k)
(
ϱ̃+β+

√
(ϱ̃+β)

2
+ 4β

1−δ2k

)
=ϱ̃+β+

√
(ϱ̃+β)

2
+ 4β

1−δ2k
− ϱ̃−β

2
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=
ϱ̃+β+

√
(ϱ̃+β)

2
+ 4β

1−δ2k

2
,

which implies that ϱ2 − ϱ(ϱ̃+β)− β
1−δ2k

⩾ 0. This is equivalent to

1
ϱ−β

(
ϱϱ̃+

β

1− δ2k

)
⩽ ϱ. (3.48)

It follows from ϱ< 1 in (3.26) that(
ϱ̃+

β

1− δ2k

)
1

1−β
+ 1− ϱ⩽ ϱ−β

1−β
+ 1− ϱ⩽ 1. (3.49)

By (3.48) and (3.49), we obtain from (3.47) the inequality

∥xp+1 − xS∥2 ⩽ ϱp+1∥x0 − xS∥2 +
Cβ

1− ϱ
∥ν ′∥2.

Thus (3.41) holds for j = p+ 1. We conclude that (3.25) holds for all nonnegative integers
p.

Remark 3.6. The main result in this section discloses the theoretical (guaranteed) perform-
ance of the DTAM under the condition (3.23). This condition also indicates that the choice of
generalized mean functions may influence the performance of the algorithm. From theorem
3.5, one can see that the selection of the generalized mean function would determine the value
of g(γ) and thus directly affect the constants C1,C2,ϱ, ϱ̃ and δ(γ). This influences the error
bound and condition (3.23) itself. More specifically, let us assume the target data x being k-
sparse and ν= 0, and thus ∥ν ′∥2 = 0 in (3.25). From (3.25), we see that the smaller ϱ is, the
faster the convergence speed of the algorithm would be. By simply taking β= 0, we immedi-
ately see that ϱ= ϱ̃ which is decreasing with respect to g(γ). Thus in theory, one can choose
generalized mean functions such that the constant ϱ in error bound is as small as possible so
that the algorithm can converge as quickly as possible.

Remark 3.7. From (3.8) and (3.24) and definition 2.1, the constants in (3.26) including
δk, δ2k, C2 and ϱ̃ only depend on either the matrix A or the parameter γ together with the gen-
eralized mean function being used. These constants are independent of the noise level ∥ν ′∥2.
From (3.26), ϱ and Cβ are strictly increasing with respect to β for given γ ∈ (0,1]. This indic-
ates that the coefficient Cβ

1−ϱ in (3.25) is strictly increasing with respect to β. To control this
coefficient, we may simply use a relatively small β when the noise level is relatively high;
otherwise, we may use a relatively large β when the noise level is low.

Remark 3.8. From [20, proposition 6.2], we see that the (3k)-th order RIC of thematrixA satis-
fies δ3k ⩽ (3k− 1)µ if A has ℓ2-normalized columns, where µ is the coherence of A. Moreover,
the coherence of the normalized gaussian matrix A satisfies

µ⩽
√
15logn√

m−
√
12logn

with probability exceeding 1− 11/n if 60 logn⩽ m⩽ (n− 1)/(4logn) (see, e.g. [33, theorem
2]). Thus the (3k)-th order RIC of the normalized Gaussian matrix A satisfies δ3k < δ(γ)
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in (3.23) with probability exceeding 1− 11/n provided that mmin < m⩽ (n− 1)/(4logn),
where

mmin =max

20,

(√
5(3k− 1)
δ (γ)

+ 2

)2
 · 3logn.

Moreover, the inequality mmin < (n− 1)/(4logn) is ensured for given δ(γ) ∈ (0,1) provided
that k≪ n and n is large enough. Based on such observation, we choose to use the normalized
Gaussian random matrix as the measurement matrix to assess the numerical performance of
the algorithm in section 4.

In [32], the PGROTP algorithm was analyzed in the case q̄⩾ 2k. The convergence of the
algorithm for the case k⩽ q̄< 2k was not yet obtained. As a byproduct of the analysis of
DTAM in this paper, we can also establish an error bound for PGROTP with q̄= k. This result
for PGROTP can be seen as a special case to the main result above.

Corollary 3.9. Let δ∗ be the unique root to the univariate function on (0,1)

Ĝ(t) :=

√
2t

1− t

[
1+

1√
1+ t

]
− 1 (3.50)

which is continuous and strictly increasing in [0,1). Let x ∈ Rn be the solution to the system
y= Ax+ ν with a noise vector ν. If the RIC of the matrix A satisfies δ3k < δ∗(≈ 0.272), then
the sequence {xp} generated by PGROTP with q̄= k obeys

∥xp− xS∥2 ⩽ ϱ̂p∥x0 − xS∥2 +
Ĉ

1− ϱ̂
∥ν ′∥2, (3.51)

where ν ′ = AxS+ ν, S= Lk(x) and

ϱ̂ :=

√
2δ3k

1− δ2k
· 1+

√
1+ δk√

1+ δ2k
< 1,

Ĉ :=
1

1− δ2k

(√
2+

2√
1+ δ2k

+
(√

2+ 1
)√

1+ δk

)
.

Proof. Comparing PGROTP with DTAM, we see the following: (i) the first step of PGROTP
with q̄= k is identical to that of DTAM with β= 0 and q= k. Thus for PGROTP, one has
∥(r p)Ωk\Ωq

∥2 = 0 in (3.16) and g(γ) is replaced by 1 in lemma 3.1. (ii) The subproblems (2.8)
and (2.4) possess a common objective function and a constraint 0⩽ w⩽ e. (iii) The third steps
of both algorithms are the identical. Therefore, lemma 3.2 and the relations (3.28)–(3.32),
(3.37) and (3.43)–(3.44) in the proof of theorem 3.5 remains valid for PGROTP by simply
setting β= 0, Vp = supp(xp)∪Ωk and g(γ) = 1 in previous analysis.

Similar to (3.33)–(3.34), we choose a k-sparse vector w̄ ∈ {0,1}n from the feasible set
of (2.4) such that supp(w̄) = S, which leads to

∥xS− up ◦ w̄∥2 = ∥xS− (up)supp(w̄) ∥2 = ∥(xS− up)S ∥2. (3.52)
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It should be noted that the term ∥(xS− up)Sp+1\S∥2 is vanished in (3.52) compared to (3.34),
due to the choice of w̄ and ŵ in the corresponding feasible sets. Similar to (3.33), by using
y= AxS+ ν ′ and (3.52), we have

∥y−A(up ◦wp)∥2 ⩽∥y−A(up ◦ w̄)∥2
⩽∥A(xS− up ◦ w̄)∥2 + ∥ν ′∥2
⩽
√

1+ δk∥xS− up ◦ w̄∥2 + ∥ν ′∥2
=
√

1+ δk∥(xS− up)S ∥2 + ∥ν ′∥2, (3.53)

where the first inequality is due to wp being the optimal solution of (2.4), and the third inequal-
ity is ensured by (2.1) with the vector xS− up ◦ w̄ being k-sparse. Combining (3.32) with (3.53),
one has

∥xS−Hk (u
p ◦wp)∥2

⩽
√

1+ δ2k
1− δ2k

∥(xS− up)Vp\(S∪Sp+1) ∥2 + ∥(xS− up)Sp+1\S ∥2

+

√
1+ δk
1− δ2k

∥(xS− up)S ∥2 +
2√

1− δ2k
∥ν ′∥2

⩽
√

2
1− δ2k

∥(xS− up)Vp\S ∥2 +

√
1+ δk
1− δ2k

∥(xS− up)S ∥2

+
2√

1− δ2k
∥ν ′∥2, (3.54)

where the last inequality is from (3.37) with a=
√

1+δ2k
1−δ2k

and b= 1. Setting β= 0 and replacing

g(γ) by 1 in lemma 3.2 and (3.44), we obtain

∥(up− xS)S ∥2 ⩽
√
2δ3k∥xp− xS∥2 +

√
2(1+ δ2k)∥ν ′∥2 (3.55)

and

∥(up− xS)Vp\S ∥2 ⩽ δ3k∥xp− xS∥2 +
√
1+ δ2k∥ν ′∥2. (3.56)

Substituting (3.56) and (3.55) into (3.54) yields

∥xS−Hk(u
p ◦wp)∥2 ⩽

√
2δ3k√

1− δ2k
(1+

√
1+ δk)∥xS− xp)∥2

+
√
2

√
1+ δ2k
1− δ2k

(
1+

√
1+ δk+

√
2

1+ δ2k

)
∥ν ′∥2.

It follows from (3.29) that

∥xp+1 − xS∥2 ⩽ ϱ̂∥xp− xS∥2 + Ĉ∥ν ′∥2,

which is the estimation in (3.51). The constants ϱ̂ and Ĉ are exactly the ones stated in the
Corollary. It is sufficient to show that ϱ̂ < 1. Note that the function in (3.22) is strictly increas-
ing in [0,1), it is easy to verify that the function Ĝ(t) given in (3.50) is also strictly increasing
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in [0,1). Also, we see that Ĝ(t) is continuous over [0,1), Ĝ(0) =−1< 0 and limt→1− Ĝ(t) =
+∞. Thus, Ĝ(t) = 0 has a unique real root δ∗ in (0, 1). By noting that δk ⩽ δ2k ⩽ δ3k < δ∗

and (3.27), we deduce that ϱ̂⩽ Ĝ(δ3k)+ 1< Ĝ(δ∗)+ 1= 1.

Remark 3.10. While the main result in this paper is shown by using the generalized mean
function (2.2) satisfying the conditions of lemma 2.5, the error bound of the algorithm can
be established with more general functions than those specified by lemma 2.5. In fact, the
inequality (3.1) is key to the establishment of theorem 3.5. While (3.1) is shown under the
condition of lemma 2.5, we can verify that some other functions may also ensure the inequal-
ity (3.1). For instance, let us consider the norm f(z) = ∥z∥ℓ (ℓ > 1), where z ∈ [0,1]k, which
can be also viewed as a generalized mean function Γθ(z) with θ = (1, . . . ,1)T ∈ Rk

++ and
Ψ(t) = ϕi (t) = tℓ for i = 1, . . .,k. Since Hessian matrix ∇2f(z) is discontinuous at 0, so this
function does not satisfy the conditions of lemma 2.5 and thus the proof of lemma 3.1 is not

suitable for this function. However, for this case, f
(
|r p(q,k)|/∥r

p
(k,k)∥2

)
⩾ γf

(
|r p(k,k)|/∥r

p
(k,k)∥2

)
is reduced to ∥r p(q,k)∥ℓ ⩾ γ∥r p(k,k)∥ℓ. Note that the norms in Rk are equivalent in the sense that
there exist two positive constants c2 ⩾ c1 > 0 such that c1∥z∥2 ⩽ ∥z∥ℓ ⩽ c2∥z∥2. This implies
that (3.1) also holds for g(γ) = γ c1

c2
. In particular, g(γ) = γ when f(z) = ∥z∥2.

4. Numerical experiments

In this section, we compare the numerical performances of six algorithms including DTAM,
PGROTP, NTP, StOMP, SP and OMP on solving several types of linear inverse problems
including the recovery of synthetic sparse signal, natural audio signal and color image. All
experiments are performed on a PC with the processor Intel(R) Core(TM) i7-10700 CPU@
2.90 GHz and 16 GBmemory. The CVX [22] with solver ‘Mosek’ [2] was used to solve convex
optimization subproblems involved in DTAM and PGROTP. We take (4.1) as the stopping cri-
terion in section 4.1 in noiseless situations, and take ∥xp− xp−1∥2/∥xp∥2 ⩽ 10−3 in sections 4.2
and 4.3 in noisy settings. The maximum numbers of iterations of DTAM, PGROTP, NTP and
SP were set to be 50, 50, 150, 150, respectively, while OMP by its nature is performed exactly
k iterations. The generalized mean function Γθ(z) in DTAM is given by (2.3) with σ= 1 and
θ = (1, . . . ,1)T ∈ Rk

++ and the parameters γ,β are set as γ= 0.1 and β= 0.4, and unless oth-
erwise specified, these parameters remained unchanged throughout the experiments. The para-
meters (α,λ) in NTP are set as in [48], i.e. α= 5 and λ= 1. The number of stages of StOMP
is set to be 50, and its threshold parameter ts is determined by the CFAR threshold selection
rule [16].

4.1. Experiments with synthetic data

We consider the recovery of a sparse vector x∗ from accurate measurements y= Ax∗ with A=
Â · diag(1/∥Â1∥2, . . . ,1/∥Ân∥2), where x∗ ∈ Rn and Â ∈ Rm×n are randomly generated with
n= 4000 and m= 0.2n, and Âi’s are the columns of matrix Â. Moreover, the nonzeros of x∗

and entries of Â are standard Gaussian random variables, and the position of nonzeros of x∗

follows the uniform distribution.We first compare the success frequencies and average runtime
of these algorithms for solving 100 random examples of (A,x∗) for every given sparsity level
k, where k= 5+ 5j, j = 1, . . .,71. In our experiments, the recovery is counted as ‘success’ if
the solution xp generated by an algorithm satisfies the criterion

∥xp− x∗∥2/∥x∗∥2 ⩽ 10−3. (4.1)
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Figure 1. Comparison of success frequencies and runtime on synthetic data, and T is
the average CPU time (in seconds) for recovery.

The experiment results are summarized in figure 1. The first figure on the left indicates that the
DTAM can achieve the success frequency (i.e. the ratio of the number of recovery successes
and the number of random examples being tried) comparable to several existing methods and
may outperform these existing methods on many examples. In figure 1(b), we use T to denote
the average CPU time required for these algorithms to recover sparse vectors. Clearly, DTAM
works much faster than PGROTP (since DTAM solves the subproblem (2.8) in a lower dimen-
sional subspace, whose dimension is at most 2k), while it is slower than StOMP and SP. Also,
DTAM consumes less time than NTP and OMP for relatively small k, while it takes more time
than NTP for k⩾ m/5 and OMP for k⩾ m/4.

4.2. Reconstruction of audio signal

The first row in figure 2 is an audio signal d ∈ Rn with n= 16384, which is the sound of
an unknown Bird sampled at 48 kHz. We aim to reconstruct the bird signal from the accur-
ate measurements y=Bd with B ∈ Rm×n being a normalized Gaussian matrix given as in
section 4.1, wherein m= ⌈κ · n⌉ and κ is the sampling rate. Generating a discrete wavelet
matrix Φ ∈ Rn×n from the DWT with nine levels of ‘sym16’ wavelet, the audio signal d
can be sparsely represented as d=ΦTx, where the wavelet coefficient vector x ∈ Rn is k-
compressible. Thus the reconstruction of d from y=Bd is transformed to the recovery of a
k-sparse vector x̂ ∈ Rn from y= Ax with A= BΦT by using the model (1.3), where x̂ is the
best k-term approximation of x and the sparsity level is set as k= ⌈0.3m⌉. Once x̂ is recovered
by the algorithm, the reconstructed signal d̂ ∈ Rn can be obtained by d̂=ΦTx̂ immediately.
The quality of reconstruction is evaluated by the SNR, defined as follows:

SNR := 20 · log10
(
∥d∥2/∥d− d̂∥2

)
.

TheDTAMcan successfully reconstruct the audio signal. This can be seen from figure 2 that
the reconstructed signal (red) by DTAMwith κ= 0.5 is clearly matching with the original sig-
nal (blue). The performances of the algorithms with different sampling rates κ= 0.35,0.4,0.5
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Figure 2. Reconstruction of an audio signal by DTAM with κ= 0.5; The first row is
the original signal, which is availabe from [50], and the second one demonstrates both
the original signal (blue) and the reconstructed one by DTAM (red).

Table 3. Comparison of the SNR (dB) and CPU time (in seconds) for algorithms with
different sampling rates κ.

κ DTAM PGROTP NTP StOMP SP OMP

SNR
0.35 21.47 20.71 20.09 19.17 21.67 21.04
0.4 23.48 23.30 22.85 21.85 23.67 23.08
0.5 26.33 25.61 25.39 25.57 26.35 25.66

Time
0.35 516 1770 81 108 203 1044
0.4 765 1819 92 91 196 1541
0.5 1421 2897 103 138 826 3069

are summarized in table 3. The second row of the table indicates that the SNRs of DTAM are
almost the same as that of SP, and they are always larger than other four algorithms for each
given κ. For instance, the SNR of DTAM exceeds that of StOMP by 0.76 dB as κ= 0.5, and
by 2.3 dB as κ= 0.35. This means DTAM performs better on audio signal reconstruction than
several algorithms except SP for small κ. The third row of table 3 reveals that DTAM con-
sumes less time for solving the problems than PGROTP and OMP for these given values of κ,
while it spends more time than other three.
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Figure 3. Performance of DTAM on image denoising. The original image is availabe
from [50].

4.3. Image denoising

We now demonstrate the performance of DTAM on color image denoising. Figure 3(a) is the
original image ShiGanLi of size n× n× 3 with n= 1024, which is an ancient cooking vessel.
The figure 3(b) is the noised image obtained by adding Salt and Pepper noise with noise density
0.08 to the original image in figure 3(a), wherein Salt noise is added to the rows ranging from 1
to ⌊0.8n⌋ of the original image while Pepper noise is added to the remaining rows. For a given
channel of the noisy image, the main steps for image denoising are as follows: First, perform
a sparse representation of noisy image via the DWT with five levels of ‘sym16’ wavelet. Its
coefficient matrix, denoted by X̃, is compressible. Then, consider the accurate measurements
Z= AX̃ of the coefficient matrix X̃, where A is an m× n normalized Gaussian matrix given as
in section 4.1 with m= ⌈0.6n⌉. Finally, recover the coefficient matrix X of the original image
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Table 4. Comparison of the PSNR (dB) for algorithms.

DTAM PGROTP NTP StOMP SP OMP Noisy image

PSNR 20.81 20.96 20.89 20.89 20.93 20.53 15.41

by an algorithm from the data (A,Z), in which Z can be seen as the inaccurate measurements
of X. After this, reconstruct the original image by using the inverse DWT. Note that the above
steps need to perform three times due to three channels of the color image. The sparsity level
is taken as k= ⌈m/4⌉ for all algorithms. The value of the parameter γ in DTAM is changed
to 0.4, and other parameters remain unchanged. Figure 3(c) shows that DTAM can efficiently
remove the noise and restore the image quality. We also use the following PSNR to evaluate
the quality of denoised image:

PSNR := 20 · log10
(
255/

√
MSE

)
,

where MSE is the mean-squared error between the denoised image and the original one.
We only record the PSNR on the Y channel in YCbCr color space. The PSNRs for several
algorithms are displayed in table 4, fromwhich we observe that the PSNRs of these algorithms
are close to each other while PGROTP is slightly better than other algorithms. These algorithms
bring at least 5.1 dB improvement in PSNR compared to the noisy image.

5. Conclusions

The algorithm DTAM is proposed for sparse linear inverse problems through merging a few
algorithmic development techniques such as the sparse search direction, dynamic index selec-
tion and dimensionality reduction. The computational complexity of DTAM is lower than
that of ROTP-type algorithms. A unique feature of DTAM is that it employs a generalized
mean function to facilitate a dynamic choice of the vector bases to construct the solution
of linear inverse problems, and that the search direction in the algorithm is a linear com-
bination of the negative gradients of error metric at the iterates produced by the algorithm.
The error bound of DTAM has been established under suitable assumptions. Moreover, the
error bound for the existing PGROTP method has also derived for the case q̄= k for the first
time. Numerical experiments show that DTAM can compete with several existing algorithms,
including PGROTP, NTP, StOMP, SP and OMP, in successfully locating the solution of linear
inverse problems.
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[32] Meng N, Zhao Y-B, Kočvara M and Sun Z F 2022 Partial gradient optimal thresholding algorithms
for a class of sparse optimization problems J. Glob. Optim. 84 393–413

[33] Mixon D G, Bajwa W U and Calderbank R 2011 Frame coherence and sparse signal processing
Proc. IEEE Int. Symp. Inform. Theory pp 663–7

[34] MoQ 2015A sharp restricted isometry constant bound of orthogonal matching pursuit (arXiv:1501.
01708)

[35] Sadigh A N, Yazdi H S and Harati A 2021 Diversity-based diffusion robust RLS using adaptive
forgetting factor Signal Process. 182 107950

[36] Sun Z-F, Zhou J-C, Zhao Y-B and Meng N 2023 Heavy-ball-based hard thresholding algorithms
for sparse signal recovery J. Comput. Appl. Math. 430 115264

[37] Sun Z-F, Zhou J-C and ZhaoY-B 2023Heavy-ball-based optimal thresholding algorithms for sparse
linear inverse problems J. Sci. Comput. 96 93

[38] Tropp J A and Gilbert A C 2007 Signal recovery from randommeasurements via orthogonal match-
ing pursuit IEEE Trans. Inf. Theory 53 4655–66

[39] Tseng P 1988 A simple polynomial-time algorithm for convex quadratic programming Report No.
LIDS-P-1819 (Laboratory for Information and Decision Systems, MIT)

[40] Wang J, Kwon S and Shim B 2012 Generalized orthogonal matching pursuit IEEE Trans. Signal
Process. 60 6202–16

[41] Wen J, He H, He Z and Zhu F 2023 A pseudo-inverse-based hard thresholding algorithm for sparse
signal recovery IEEE Trans. Intell. Transp. Syst. 24 7621–30

[42] Xiang J, Dong Y and Yang Y 2021 FISTA-Net: learning a fast iterative shrinkage thresholding
network for inverse problems in imaging IEEE Trans. Med. Imaging 40 1329–39

[43] Ye Y 1987 Further Development on the Interior Algorithm for Convex Quadratic Programming
(Manuscript, Stanford University and Integrated Systems Inc.)

[44] Yin W, Osher S, Goldfarb D and Darbon J 2008 Bregman iterative algorithms for ℓ1-minimization
with applications to compressed sensing SIAM J. Imaging Sci. 1 143–68

[45] Zhao Y-B 2020 Optimal k-thresholding algorithms for sparse optimization problems SIAM J.
Optim. 30 31–55

[46] Zhao Y-B, Fang S-C and Li D 2006 Constructing generalized mean functions using convex func-
tions with regularity conditions SIAM J. Optim. 17 37–51

[47] Zhao Y-B and Luo Z-Q 2021 Analysis of optimal thresholding algorithms for compressed sensing
Signal Process. 187 108148

[48] Zhao Y-B and Luo Z-Q 2022 Natural thresholding algorithms for signal recovery with sparsity
IEEE Open J. Signal Process. 3 417–31

[49] Zhao Y-B and Luo Z-Q 2023 Dynamic orthogonal matching pursuit for sparse data reconstruction
IEEE Open J. Signal Process. 4 242–56

[50] Sun Z-F 2024 zhongfengsun.github.io (available at: https://github.com/zhongfengsun/
zhongfengsun.github.io/tree/gh-pages/data/DTAM_IP_2024)

28

https://cvxr.com/cvx
https://doi.org/10.1007/s10851-013-0434-7
https://doi.org/10.1007/s10851-013-0434-7
https://doi.org/10.1109/LGRS.2019.2943937
https://doi.org/10.1109/LGRS.2019.2943937
https://doi.org/10.1109/TWC.2017.2776108
https://doi.org/10.1109/TWC.2017.2776108
https://doi.org/10.1109/TAC.2023.3340120
https://doi.org/10.1109/TAC.2023.3340120
https://doi.org/10.1109/TMI.2016.2550080
https://doi.org/10.1109/TMI.2016.2550080
https://doi.org/10.1287/moor.15.2.342
https://doi.org/10.1287/moor.15.2.342
https://doi.org/10.1109/TSP.2020.3037996
https://doi.org/10.1109/TSP.2020.3037996
https://doi.org/10.1007/s40305-021-00370-9
https://doi.org/10.1007/s40305-021-00370-9
https://doi.org/10.1007/s10898-022-01143-1
https://doi.org/10.1007/s10898-022-01143-1
https://arxiv.org/abs/1501.01708
https://arxiv.org/abs/1501.01708
https://doi.org/10.1016/j.sigpro.2020.107950
https://doi.org/10.1016/j.sigpro.2020.107950
https://doi.org/10.1016/j.cam.2023.115264
https://doi.org/10.1016/j.cam.2023.115264
https://doi.org/10.1007/s10915-023-02315-1
https://doi.org/10.1007/s10915-023-02315-1
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TSP.2012.2218810
https://doi.org/10.1109/TSP.2012.2218810
https://doi.org/10.1109/TITS.2022.3172868
https://doi.org/10.1109/TITS.2022.3172868
https://doi.org/10.1109/TMI.2021.3054167
https://doi.org/10.1109/TMI.2021.3054167
https://doi.org/10.1137/070703983
https://doi.org/10.1137/070703983
https://doi.org/10.1137/18M1219187
https://doi.org/10.1137/18M1219187
https://doi.org/10.1137/040603838
https://doi.org/10.1137/040603838
https://doi.org/10.1016/j.sigpro.2021.108148
https://doi.org/10.1016/j.sigpro.2021.108148
https://doi.org/10.1109/OJSP.2022.3195115
https://doi.org/10.1109/OJSP.2022.3195115
https://doi.org/10.1109/OJSP.2023.3247301
https://doi.org/10.1109/OJSP.2023.3247301
https://github.com/zhongfengsun/zhongfengsun.github.io/tree/gh-pages/data/DTAM_IP_2024
https://github.com/zhongfengsun/zhongfengsun.github.io/tree/gh-pages/data/DTAM_IP_2024

	Dynamic thresholding algorithm with memory for linear inverse problems
	1. Introduction
	2. Preliminary and algorithms
	2.1. Basic inequalities
	2.2. Generalized mean function
	2.3. Algorithms

	3. Error bound of DTAM
	4. Numerical experiments
	4.1. Experiments with synthetic data
	4.2. Reconstruction of audio signal
	4.3. Image denoising

	5. Conclusions
	References


