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a b s t r a c t

The hard thresholding technique plays a vital role in the development of algorithms for
sparse signal recovery. By merging this technique and heavy-ball acceleration method
which is a multi-step extension of the traditional gradient descent method, we propose
the so-called heavy-ball-based hard thresholding (HBHT) and heavy-ball-based hard
thresholding pursuit (HBHTP) algorithms for signal recovery. It turns out that the HBHT
and HBHTP can successfully recover a k-sparse signal if the restricted isometry constant
of the measurement matrix satisfies δ3k < 0.618 and δ3k < 0.577, respectively. The
guaranteed success of HBHT and HBHTP is also shown under the conditions δ2k <

0.356 and δ2k < 0.377, respectively. Moreover, the finite convergence of HBHTP
and stability of the two algorithms are also established in this paper. Simulations on
random problem instances are performed to compare the performance of the proposed
algorithms and several existing ones. Empirical results indicate that the HBHTP performs
very comparably to a few existing algorithms and it takes less average time to achieve
the signal recovery than these existing methods.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In compressed sensing scenarios, one needs to recover a sparse signal x ∈ Rn from linear measurements y := Ax + ν,
here ν ∈ Rm are measurement errors and A is a known m × n measurement matrix with m ≪ n. When ν = 0, the
easurements y are accurate. To recover the signal x in such an environment, one may use the optimization model

min
z

{∥y − Az∥2
2 : ∥z∥0 ≤ k}, (1.1)

here k (a given integer number) is an estimate of the sparsity level of x, and ∥z∥0 denotes the number of nonzero entries
f z ∈ Rn. In this paper, a vector z is said to be k-sparse if ∥z∥0 ≤ k. It is well known that when x is k-sparse and A satisfies
ertain assumptions, x will be the unique k-sparse solution to the problem (1.1) (see, e.g., [1–3]). Thus the recovery of x
ften amounts to solving (1.1), and the algorithms for such a problem are usually called compressed sensing algorithms
r, in more general, sparse optimization algorithms.

∗ Corresponding author.
E-mail addresses: zfsun@sdut.edu.cn (Z.-F. Sun), jinchuanzhou@sdut.edu.cn (J.-C. Zhou), yunbinzhao@cuhk.edu.cn (Y.-B. Zhao),

Nan.Meng@nottingham.edu.cn (N. Meng).
https://doi.org/10.1016/j.cam.2023.115264
0377-0427/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2023.115264
https://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2023.115264&domain=pdf
mailto:zfsun@sdut.edu.cn
mailto:jinchuanzhou@sdut.edu.cn
mailto:yunbinzhao@cuhk.edu.cn
mailto:Nan.Meng@nottingham.edu.cn
https://doi.org/10.1016/j.cam.2023.115264


Z.-F. Sun, J.-C. Zhou, Y.-B. Zhao et al. Journal of Computational and Applied Mathematics 430 (2023) 115264

r

t

Table 1
Abbreviations.
ASM Algorithm selection map
CoSaMP Compressive sampling matching pursuit
GDS Gradient descent with sparsification
HBHT Heavy-ball-based hard thresholding
HBHTP Heavy-ball-based hard thresholding pursuit
HTP Hard thresholding pursuit
IHT Iterative hard thresholding
OMP Orthogonal matching pursuit
PSNR Peak signal-to-noise ratio
PTC Phase transition curve
RIC Restricted isometry constant
RIP Restricted isometry property
SP Subspace pursuit

Let us first briefly review the thresholding algorithms for sparse signal recovery. Before doing so, we summarize the
abbreviations in Table 1, which are frequently used in the paper. The thresholding technique was introduced by Donoho
and Johnstone [4]. At present, there are three main classes of thresholding algorithms: hard thresholding [5–13], soft
thresholding [14–16], and optimal thresholding [17–19]. A huge amount of work has been carried out for the class of hard
thresholding algorithms. For instance, the IHT was studied early in [5], which is a combination of the gradient descent and
hard thresholding technique. The IHT admits a few modifications including the GDS [20] and the normalized IHT with a
fixed or adaptive steplength [7,10]. In addition, combining IHT [5,7,20] and orthogonal projection immediately leads to the
HTP in [9]. The thresholding methods combined with Nesterov’s acceleration technique were also studied (e.g., [8,11,13]).
Recently, it was pointed out in [17] that performing hard thresholding is usually independent of the reduction of the
residual ∥y − Az∥2

2 and thus the so-called optimal k-thresholding operator was proposed in [17,18]. Nevertheless, the
optimal k-thresholding algorithm need to solve a quadratic convex optimization problem at every iteration which requires
more computational time than the traditional hard thresholding methods.

The aim of this paper is to use the heavy ball method to accelerate the hard thresholding algorithms without increasing
its computational complexity. Recall that the search direction at the iterate xp in IHT and HTP is given by AT (y − Axp),
which is the negative gradient of the residual at xp. With the aid of the momentum term xp − xp−1, the search direction
can be modified to

dp = αAT (y − Axp) + β(xp − xp−1) (1.2)

with two parameters α > 0 and β ≥ 0. This is the two-step heavy-ball method proposed for optimization problems by
Polyak [21]. It has been shown that a fast local convergence of this method for optimization problems can be achieved
provided that the parameters are properly chosen, and that the method can work even when the Hessian matrix of the
objective function is ill-posed (see, e.g., Chapter 3 in [22]). The global convergence of the heavy ball method has also
been discussed in the literature [23–26]. This method is widely used in such fields as distributed optimization [24,26],
variational inequality [27], wireless network [28], nonconvex optimization [29,30], deep neural network [31], and image
restoration [32]. For instance, it was found in [30] that the heavy ball momentum plays an important role in driving
the iterates away from the saddle points of nonconvex optimization problems; It was also used in [32] to accelerate
the Richardson–Lucy algorithm in image deconvolution without causing a remarkable increase of iteration complexity;
Xin and Khan [26] observed that the distributed heavy ball method achieves a global R−linear rate for distributed
optimization, and the momentum term can dramatically improves the convergence of the algorithm for ill-conditioned
objective functions. These and other applications indicate that the heavy-ball method does admit certain advantage in
enhancing the efficiency of an iterative method for optimization problems and may outperform the extra-point method
and Nesterov acceleration method.

Motivated by the numerical advantage of heavy ball acceleration technique, we propose the HBHT and HBHTP
algorithms for the recovery problem (1.1). The guaranteed performance of the two algorithms are shown under the
assumption of RIP, which was originally introduced by Candès and Tao [33] and has now become a standard tool for the
analysis of various compressed sensing algorithms. It is well known that the success of IHT for k-sparse signal recovery
can be guaranteed under the RIP condition δ3k < (

√
5−1)/2 ≈ 0.618 (see [34]) and that of HTP can be guaranteed under

δ3k < 1/
√
3 ≈ 0.577 (see [9]). Under the same condition and proper choice of algorithmic parameters, we establish

the guaranteed-performance results for the two algorithms HBHT and HBHTP. Roughly speaking, we show that HBHT is
convergent under the condition δ3k < (

√
5 − 1)/2 and that HBHTP is convergent under the condition δ3k < 1/

√
3. By

using an analysis method in [18], we further prove that the condition for theoretical performance of the two algorithms
can be established in term of δ2k as well. Specifically, the guaranteed success of HBHT and HBHTP can be ensured if
δ2k < (

√
5 − 1)/(2

√
3) ≈ 0.356 and δ2k < 1/

√
7 ≈ 0.377, respectively. Moreover, the finite convergence of HBHTP and

ecovery stability of the two methods are also shown in this paper.
A large amount of experiments on random problem instances of sparse signal recovery are performed to investigate

he success rate and phase transition features of the proposed algorithms. We also compare the performances of the
2
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proposed algorithms and several existing ones such as OMP [35,36], CoSaMP [37], SP [38], IHT and HTP. The empirical
results show that incorporating heavy ball technique into IHT and HTP does remarkably improve the performance of IHT
and HTP, respectively. The HBHTP not only admits robust signal recovery ability in both noisy and noiseless scenarios,
but also takes relatively less average computational time to achieve the recovery success compared to several existing
methods.

The paper is structured as follows. In Section 2, we described the HBHT and HBHTP algorithms and list some notations
nd useful inequalities. The theoretical analysis of the proposed algorithms is conducted in Sections 3 and 4. Numerical
esults are given in Section 5, and conclusions are drawn in the last section.

. Preliminary and algorithms

.1. Notation

Denote by N := {1, 2, . . . , n}. For a subset Ω ⊆ N , let Ω := N \ Ω and |Ω| denote the complement set and the
cardinality of Ω , respectively. Given a vector z ∈ Rn, the index set supp(z) := {i ∈ N : zi ̸= 0} denotes the support of z,
and zΩ ∈ Rn is the vector with entries

(zΩ )i =

{
zi, i ∈ Ω,

0, i /∈ Ω.

Let Lk(z) be the index set of the k largest absolute entries of z, and let Hk(·) be the hard thresholding operator which
retains the k largest entries in magnitude and zeroing out other entries of a vector. The k-sparse vector Hk(z) is the best
k-term approximation of z ∈ Rn. Denote by σk(z)q, where q > 0 is an integer number, the residual of the best k-term
approximation of z, i.e.,

σk(z)q = min
u

{∥z − u∥q : ∥u∥0 ≤ k}.

For any j ∈ R, ⌈j⌉ represents the nearest integer greater than or equal to j, and ⌊j⌋ represents the nearest integer less than
or equal to j.

2.2. Basic inequalities

We first recall the RIC and RIP of a given measurement matrix.

Definition 2.1 ([33]). Let A ∈ Rm×n with m < n be a matrix. The restricted isometry constant (RIC) of order k, denoted δk,
is the smallest number δ ≥ 0 such that

(1 − δ)∥u∥2
2 ≤ ∥Au∥2

2 ≤ (1 + δ)∥u∥2
2 (2.1)

for all k-sparse vectors u ∈ Rn(i.e., ∥u∥0 ≤ k). If δk < 1, then A is said to satisfy the restricted isometry property (RIP) of
order k.

From the definition above, one can see that δt ≤ δs for any integer number t ≤ s. The following properties of RIC have
been frequently used in the analysis of compressed sensing algorithms.

Lemma 2.1 ([9,17]). Let u ∈ Rm, v ∈ Rn be two vectors, t ∈ N be a positive integer number and W ⊆ N be an index set.

(i) If |W ∪ supp(v)| ≤ t, then
(

(I − ATA)v
)
W


2

≤ δt∥v∥2.

(ii) If |W | ≤ t, then
(

ATu
)
W


2

≤
√
1 + δt∥u∥2.

The next lemma is taken directly from [34], and it can also be implied from the result in [39].

Lemma 2.2 ([34]). For any vector z ∈ Rn and for any k-sparse vector x ∈ Rn, one has

∥x − Hk(z)∥2 ≤ η ∥(x − z)W∪W∗∥2 , (2.2)

where η = (
√
5 + 1)/2, W = supp(x) and W ∗

= supp(Hk(z)).

2.3. Algorithm

We now describe the algorithms in this paper. The basic idea is to use the search direction dp given by (1.2), resulted
from the heavy-ball acceleration method, to generate a point up

= xp + dp where xp denotes the current iterate of the
algorithm. Then, perform a hard thresholding on up to produce the next iterate. This idea leads to Algorithm 1 for the
recovery problem (1.1).

We may treat the point Hk(up) in HBHT as an intermediate point and perform a pursuit step (i.e., orthogonal projection)
to generate the next iterate xp+1. This leads to Algorithm 2 called HBHTP.
3
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Algorithm 1 Heavy-Ball-Based Hard Thresholding (HBHT)
Input (A, y, k) and two parameters α > 0 and β ≥ 0 and two initial points x0 and x1.

S1. At xp, set

up
= xp + αAT (y − Axp) + β(xp − xp−1). (2.3)

[Note: The term β(xp − xp−1) is called the momentum term in heavy ball method.]
S2. Let

xp+1
= Hk(up).

Repeat the above steps until a certain stopping criterion is satisfied.

Algorithm 2 Heavy-Ball-Based Hard Thresholding Pursuit (HBHTP)
Input (A, y, k) and two parameters α > 0 and β ≥ 0 and two initial points x0 and x1.

S1. At xp, set

up
= xp + αAT (y − Axp) + β(xp − xp−1).

S2. Let Sp+1
= Lk(up), and

xp+1
= argmin

z∈Rn
{∥y − Az∥2

2 : supp(z) ⊆ Sp+1
}. (2.4)

Repeat the above steps until a certain stopping criterion is satisfied.

Clearly, HBHT and HBHTP reduce to IHT and HTP, respectively, when α = 1 and β = 0. The initial points x0 and x1 can
be any vectors. The simplest choice is x1 = x0 = 0. To stop the algorithms, one can set the maximum number of iterations
or use other stopping criteria such as ∥y−Axp∥2 ≤ ε, where ε > 0 is a small tolerance. For instance, if the measurements
y are accurate enough, then the measurement error ∥ν∥2 = ∥y−Ax∥2 would be very small. In such a case, it makes sense
to use the stopping criterion ∥y − Axp∥2 ≤ ε. It is also worth mentioning that for simplicity, we treat α and β as fixed
parameters throughout the paper. However, it should be pointed out that these parameters can be updated from step to
step in order to get a better performance of the algorithms from both theoretical and practical viewpoints. This might be
an interesting future work.

3. Convergence analysis

In this section, we analyze the performance of HBHT and HBHTP under the RIP of order 3k and 2k, respectively. We
lso discussed the finite convergence of HBHTP under some conditions. Since the heavy-ball method is a two-step method
n the sense that the next iterate xp+1 is generated based on the previous two iterates xp and xp−1, the analysis of HBHT
and HBHTP is remarkably different from the traditional IHT and HTP. To this need, we first establish the following useful
lemma.

Lemma 3.1. Suppose that the nonnegative sequence {ap} ⊆ R (p = 0, 1, . . . ) satisfies

ap+1
≤ b1ap + b2ap−1

+ b3, p ≥ 1, (3.1)

where b1, b2, b3 ≥ 0 and b1 + b2 < 1. Then

ap ≤ θp−1 [
a1 + (θ − b1)a0

]
+

b3
1 − θ

, (3.2)

ith

0 ≤ θ :=

b1 +

√
b21 + 4b2

2
< 1.

Proof. Denote by q1 :=
−b1+

√
b21+4b2
2 . Note that b1, b2 ≥ 0 and b1 + b2 < 1. It is straightforward to verify that

1 ≥ 0, (b1 + q1)q1 = b2 and

0 ≤ θ =

b1 +

√
b21 + 4b2

= b1 + q1 < 1,

2

4
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where θ < 1 follows from the condition b1 + b2 < 1. Thus it follows from (3.1) that

ap+1
+ q1ap ≤ (b1 + q1)ap + b2ap−1

+ b3 = θ (ap + q1ap−1) + b3,

which implies

ap+1
≤ ap+1

+ q1ap ≤θp(a1 + q1a0) + b3(1 + θ + · · · + θp−1)

≤θp [
a1 + (θ − b1)a0

]
+

b3
1 − θ

.

Thus the relation (3.2) holds. ■

3.1. Guaranteed performance under RIP of order 3k

Denote by η = (
√
5+ 1)/2 throughout the remaining of this paper. We now prove the guaranteed performance of the

proposed algorithms for signal recovery under some assumptions. We first consider the HBHT, to which the main result
is stated as follows.

Theorem 3.1. Suppose that the RIC, δ3k, of the measurement matrix A and the parameters α and β obey the bounds

δ3k <

√
5 − 1
2

≈ 0.618, 0 ≤ β <
η

1 + δ3k
− 1,

2(1 + β) − η

1 − δ3k
< α <

η

1 + δ3k
. (3.3)

et y := Ax + ν be the measurements of x with measurement errors ν. Then the iterates {xp} generated by HBHT satisfies

∥xS − xp∥2 ≤ C1τ
p−1

+ C2∥ν
′
∥2, (3.4)

here S = Lk(x), ν ′
= ν + AxS , and C1, C2 are the quantities given as

C1 = ∥xS − x1∥2 + (τ − b)∥xS − x0∥2, C2 =
ηα

1 − τ

√
1 + δ2k (3.5)

ith τ :=
b+

√
b2+4ηβ

2 . The fact τ < 1 is ensured under (3.3) and together with

b = η(|1 − α + β| + αδ3k). (3.6)

roof. By (2.3), we have

up
− xS = (1 − α + β)(xp − xS) + α(I − ATA)(xp − xS) − β(xp−1

− xS) + αATν ′, (3.7)

where ν ′
= ν + AxS . Denote V p

:= supp(Hk(up)). By using Lemma 2.2 and (3.7), we obtain

∥xp+1
− xS∥2 =∥Hk(up) − xS∥2

≤η∥(up
− xS)S∪Vp∥2

≤η|1 − α + β| · ∥xp − xS∥2 + ηα∥[(I − ATA)(xp − xS)]S∪Vp∥2

+ ηβ∥xp−1
− xS∥2 + ηα∥(ATν ′)S∪Vp∥2. (3.8)

ince |S ∪ V p
| ≤ 2k and |supp(xp − xS) ∪ S ∪ V p

| ≤ 3k, by using Lemma 2.1, we obtain

∥[(I − ATA)(xp − xS)]S∪Vp∥2 ≤ δ3k∥xp − xS∥2 (3.9)

nd

∥(ATν ′)S∪Vp∥2 ≤

√
1 + δ2k∥ν

′
∥2. (3.10)

ubstituting (3.9) and (3.10) into (3.8) yields

∥xp+1
− xS∥2 ≤ b∥xp − xS∥2 + ηβ∥xp−1

− xS∥2 + ηα
√
1 + δ2k∥ν

′
∥2, (3.11)

here b is given by (3.6). The recursive inequality (3.11) is of the form (3.1) in Lemma 3.1. We now point out that the
oefficients of the right-hand side of (3.11) satisfy the condition of Lemma 3.1. In fact, suppose that δ3k < (

√
5 − 1)/2 =

η−1, which implies that 0 <
η

1+δ3k
−1. Thus the range for β in (3.3) is well defined, and hence 2(1+β)−η

1−δ3k
< 1+β <

η

1+δ3k
.

his implies that the range for α in (3.3) is also well defined. Merging (3.6) and (3.3) leads to

b =η(|1 − α + β| + αδ3k)

=

{
η[1 + β − α(1 − δ3k)], if 2(1+β)−η

1−δ3k
< α ≤ 1 + β,

η

η[−1 − β + α(1 + δ3k)], if 1 + β < α < 1+δ3k

,

5
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⎧⎪⎪⎨⎪⎪⎩
η

[
1 + β −

(
2(1 + β) − η

1 − δ3k

)
(1 − δ3k)

]
, if 2(1+β)−η

1−δ3k
< α ≤ 1 + β,

η

[
−1 − β +

(
η

1 + δ3k

)
(1 + δ3k)

]
, if 1 + β < α <

η

1+δ3k
,

=η(η − 1 − β)
=1 − ηβ,

here the last equality follows from the fact that η is the root of the equation t2 − t = 1. The above inequality means
b + ηβ < 1 and hence the recursive formula (3.11) satisfies the condition of Lemma 3.1. Therefore, it follows from
Lemma 3.1 that

τ =
b +

√
b2 + 4ηβ

2
< 1

nd the bound (3.4) holds, where C1, C2 are given by (3.5). ■

If the signal x is k-sparse and the measurements are accurate, in which case xS = x and ν = 0, then the above result
mplies that

∥x − xp∥2 ≤ τ p−1C1 → 0 as p → ∞,

which implies that the iterates generated by HBHT converges to the sparse signal.
We now establish the main performance result for HBHTP. We first recall a helpful lemma.

Lemma 3.2 ([9]). Given the measurements y := Ax + ν of x and the index set Sp+1, the iterate xp+1 generated by the pursuit
step (2.4) obeysxp+1

− xS

2 ≤

1√
1 − (δ2k)2

(xp+1
− xS)Sp+1


2
+

√
1 + δk

1 − δ2k

ν ′

2 , (3.12)

here S = Lk(x) and ν ′
= ν + AxS .

The main result concerning the guaranteed success of HBHTP is stated as follows.

heorem 3.2. Suppose that the RIC, δ3k, of the matrix A and the parameters α and β obey

δ3k <
1

√
3

≈ 0.577, 0 ≤ β <

1
η̂

+ 1

1 + δ3k
− 1,

1 + 2β −
1
η̂

1 − δ3k
< α <

1
η̂

+ 1

1 + δ3k
, (3.13)

here η̂ =

√
2√

1−(δ2k)2
. Let y := Ax + ν be the measurements of x with errors ν. Then the iterates {xp} generated by HBHTP

satisfiesxS − xp

2 ≤ C3τ̂

p−1
+ C4

ν ′

2 , (3.14)

where S = Lk(x), ν ′
= ν + AxS , and C3, C4 are given as

C3 = ∥xS − x1∥2 + (τ̂ − b̂)∥xS − x0∥2, C4 =
1

1 − τ̂

(
η̂α

√
1 + δ2k +

√
1 + δk

1 − δ2k

)
(3.15)

ith constants b̂, τ̂ being given by

b̂ = η̂(|1 − α + β| + αδ3k), τ̂ =
b̂ +

√
b̂2 + 4η̂β

2
(3.16)

nd τ̂ < 1 is guaranteed under the condition (3.13).

roof. Since Sp+1
= Lk(up) in HBHTP and S = Lk(x), we have

∥(up)Sp+1∥
2
2 ≥ ∥(up)S∥2

2.

Eliminating the entries indexed by S ∩ Sp+1 from the above inequality and taking square root yields

∥(up) p+1 ∥ ≥ ∥(up) p+1∥ .
S \S 2 S\S 2

6
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Note that (xS)Sp+1\S = 0 and (xp+1)S\Sp+1 = 0. From the inequality above, we have

∥(up
− xS)Sp+1\S∥2 ≥∥(xS − xp+1

+ up
− xS)S\Sp+1∥2

≥∥(xS − xp+1)Sp+1∥2 − ∥(up
− xS)S\Sp+1∥2,

where the second inequality follows from the triangular inequality and the fact (xS − xp+1)S\Sp+1 = (xS − xp+1)Sp+1 . It
follows that

∥(xS − xp+1)Sp+1∥2 ≤ ∥(up
− xS)S\Sp+1∥2 + ∥(up

− xS)Sp+1\S∥2

≤

√
2
(
∥(up − xS)S\Sp+1∥

2
2 + ∥(up − xS)Sp+1\S∥

2
2

)
=

√
2∥(up

− xS)Sp+1△S∥2,

(3.17)

here Sp+1
△ S := (Sp+1

\ S) ∪ (S \ Sp+1) is the symmetric difference of Sp+1 and S. The last equality above follows from
(Sp+1

\ S) ∩ (S \ Sp+1) = ∅. Note that (3.7) remains valid for HBHTP. Merging (3.7) and (3.17) leads to

∥(xS − xp+1)Sp+1∥2 ≤
√
2{|1 − α + β| · ∥(xp − xS)Sp+1△S∥2

+ α∥(ATν ′)Sp+1△S∥2 + α∥[(I − ATA)(xp − xS)]Sp+1△S∥2

+ β∥(xp−1
− xS)Sp+1△S∥2}. (3.18)

Since |Sp+1
△ S| ≤ 2k and |(Sp+1

△ S) ∪ supp(xp − xS)| ≤ 3k, by using Lemma 2.1, one has

∥[(I − ATA)(xp − xS)]Sp+1△S∥2 ≤ δ3k
xp − xS


2 (3.19)

and

∥(ATν ′)Sp+1△S∥2 ≤

√
1 + δ2k∥ν

′
∥2. (3.20)

ombining (3.18)–(3.20) leads to

∥(xS − xp+1)Sp+1∥2 ≤
√
2{(|1 − α + β| + αδ3k)∥xp − xS∥2 + α

√
1 + δ2k∥ν

′
∥2

+ β∥xp−1
− xS∥2}.

Merging the inequality above and (3.12) in Lemma 3.2, we obtain

∥xp+1
− xS∥2 ≤ b̂∥xp − xS∥2 + η̂β∥xp−1

− xS∥2 + (1 − τ̂ )C4∥ν
′
∥2, (3.21)

here η̂, b̂, τ̂ , C4 are given exactly as in Theorem 3.2.

Since δ2k ≤ δ3k < 1
√
3
, we have

√
2δ3k <

√
1 − (δ3k)2 ≤

√
1 − (δ2k)2 =

√
2/η̂, which implies that 0 <

1
η̂
+1

1+δ3k
− 1.

herefore, the range for β in (3.13) is well defined, which also implies that

1 + 2β −
1
η̂

1 − δ3k
< 1 + β <

1
η̂

+ 1

1 + δ3k
,

nd hence the range for α in (3.13) is also well defined. Thus it follows from (3.13) and (3.16) that

b̂ =η̂(|1 − α + β| + αδ3k)

=

⎧⎨⎩ η̂[1 + β − α(1 − δ3k)],
1+2β−

1
η̂

1−δ3k
< α ≤ 1 + β,

η̂[−1 − β + α(1 + δ3k)], 1 + β < α <
1
η̂
+1

1+δ3k
,

<1 − η̂β,

.e., b+ η̂β < 1. Therefore, applying Lemma 3.1 to the recursive relation (3.21), we immediately conclude that τ̂ < 1 and
he desired estimation (3.14) holds. ■

emark 3.1. To our knowledge, the best known RIP-based bounds in terms of 3k for the IHT-type and HTP-type algorithms
are δ3k <

√
5−1
2 and δ3k < 1

√
3
, respectively. However, whether these bounds for the two algorithms are optimal or not

re still not clear at present, although Zhao and Luo [34] conjectured that δ3k <
√
5−1
2 is optimal for IHT based on the

ightness of (2.2). Similarly, it is not clear whether the bounds given in the main results of this section are optimal or not
or the heavy-ball-based algorithms.

When the measurements are accurate and the signal is k-sparse, Theorem 3.2 implies that the sequence {xp} produced
by the HBHTP must converge to the signal as p → ∞. That is, the algorithm exactly recovers the signal in this case. It is
also worth pointing out that computing the RIC of a matrix is generally difficult. Thus in practical applications, we do not
7



Z.-F. Sun, J.-C. Zhou, Y.-B. Zhao et al. Journal of Computational and Applied Mathematics 430 (2023) 115264

t

w

P
u

C

w

t
η

require that the parameters α and β be chosen to strictly meet the condition (3.3) or (3.13). These parameters can be set
o roughly satisfy these conditions, for instance,

0 ≤ β < η − 1, 2 + 2β − η < α < η, (3.22)

here η = (
√
5 + 1)/2. As examples, we may simply set α ∈ [0.4 + 2β, 1.6] and β ∈ (0, 0.6] in HBHT for simplicity, and

set α ∈ [0.3 + 2β, 1.7] and β ∈ (0, 0.7] in HBHTP.

3.2. Guaranteed performance under RIP of order 2k

Motivated by the idea of decomposition method in [18], we first establish a helpful inequality, based on which the
guaranteed performance of the proposed algorithms can be characterized immediately in terms of RIP of order 2k.

Lemma 3.3. Let x and z be two k-sparse vectors, S = supp(x) and S∗
⊆ N be an index set. If |S ∪ S∗

| ≤ 2k, then

∥[(I − ATA)(x − z)]S∪S∗∥2 ≤
√
3δ2k∥x − z∥2. (3.23)

roof. In this proof, we denote by e = (1, 1, . . . , 1)T the n-dimensional vector of ones and we use the symbol
⊗ v := (u1v1, . . . , unvn)T to denote the Hadamard product of two vectors u, v ∈ Rn. Let x, z, S, S∗ be specified as

in this lemma. Let ω̂ ∈ {0, 1}n be a 2k-sparse binary vector such that S ∪ S∗
⊆ supp(ω̂). We partition ω̂ into two k-sparse

binary vectors ω′ and ω′′, i.e., ω̂ = ω′
+ ω′′, where supp(ω′)∩ supp(ω′′) = ∅. The following relation holds for any u ∈ Rn

:u ⊗ ω̂
2
2 =

u ⊗ ω′
2
2 +

u ⊗ ω′′
2
2 . (3.24)

Note that x − z can be decomposed into two sparse vectors v(1) and v(2), i.e., x − z = v(1)
+ v(2), where v(1)

= (x − z) ⊗ ω̂

is a 2k-sparse vector and v(2)
= (x− z)⊗ (e − ω̂) is a k-sparse vector since S ⊆ supp(ω̂) and z is k-sparse. It is easy to see

that

∥[(I − ATA)(x − z)]S∪S∗∥2 ≤∥[(I − ATA)(x − z)]supp(ω̂)∥2

=∥[(I − ATA)(v(1)
+ v(2))] ⊗ ω̂∥2

≤∥[(I − ATA)v(1)
] ⊗ ω̂∥2 + ∥[(I − ATA)v(2)

] ⊗ ω̂∥2. (3.25)

Since supp(v(1)) ⊆ supp(ω̂), we have |supp(v(1)) ∪ supp(ω̂)| ≤ 2k. It follows from Lemma 2.1(i) that

∥[(I − ATA)v(1)
] ⊗ ω̂∥2 = ∥[(I − ATA)v(1)

]supp(ω̂)∥2 ≤ δ2k∥v
(1)

∥2. (3.26)

Since |supp(v(2)) ∪ supp(ω′)| ≤ 2k and |supp(v(2)) ∪ supp(ω′′)| ≤ 2k, by using (3.24) and Lemma 2.1(i), we obtain

∥[(I − ATA)v(2)
] ⊗ ω̂∥

2
2 =∥[(I − ATA)v(2)

] ⊗ ω′
∥
2
2 + ∥[(I − ATA)v(2)

] ⊗ ω′′
∥
2
2

≤2(δ2k)2∥v(2)
∥
2
2,

i.e.,

∥[(I − ATA)v(2)
] ⊗ ω̂∥2 ≤

√
2δ2k∥v(2)

∥2. (3.27)

ombining (3.25), (3.26) and (3.27) yields

∥[(I − ATA)(x − z)]S∪S∗∥2 ≤δ2k

(
∥v(1)

∥2 +
√
2∥v(2)

∥2

)
≤

√
3δ2k

√
∥v(1)∥

2
2 + ∥v(2)∥

2
2 =

√
3δ2k∥x − z∥2,

here the second inequality follows from the fact a +
√
2c ≤

√
3(a2 + c2) for any a, c ≥ 0. ■

According to Lemma 3.3, the term δ3k in bounds (3.9) and (3.19) can be replaced with
√
3δ2k. Thus we immediately

obtain the theoretical performance results for the proposed algorithms in terms of RIP of order 2k.

Corollary 3.1. Let y := Ax+ ν be the inaccurate measurements of x. If the RIC, δ2k, of the matrix A and the parameters α and
β in HBHT satisfy the conditions:

δ2k <

√
5 − 1

2
√
3

≈ 0.356, 0 ≤ β <
η

1 +
√
3δ2k

− 1,
2(1 + β) − η

1 −
√
3δ2k

< α <
η

1 +
√
3δ2k

,

hen the conclusion of Theorem 3.1 remains valid, with constants τ , C1, C2 being defined the same way therein except b =

(|1 − α + β| + α
√
3δ ).
2k

8
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Table 2
RIP-based bounds.
Algorithms IHT [34] IHTµ/GDS [2,20] HBHT HTP [9] HBHTP

δ3k < δ∗ 0.618 0.618 0.577 0.577
δ2k < δ∗ 0.333 0.356 0.377

Corollary 3.2. Let y := Ax+ ν be the inaccurate measurements of x. If the RIC, δ2k, of the matrix A and the parameters α and
β in HBHTP satisfy the conditions:

δ2k <
1

√
7

≈ 0.377, 0 ≤ β <

1
η̂

+ 1

1 +
√
3δ2k

− 1,
1 + 2β −

1
η̂

1 −
√
3δ2k

< α <

1
η̂

+ 1

1 +
√
3δ2k

,

then the conclusion of Theorem 3.2 remains valid, with constants τ̂ , C3, C4 being defined the same way therein except b̂ =

η̂(|1 − α + β| + α
√
3δ2k).

emark 3.2. According to Proposition 6.6 in [2], one has the relation δ3k ≤ 3δ2k. If we use this relation to derive an upper
bound for the left-hand side of (3.23), then the resulting bound would be too loose. The bound (3.23) established here
is much tighter, and thus it leads to a desired strong result. We summarize the best known conditions for guaranteed
performance of several compressed sensing algorithms in Table 2. Our analysis indicates that the RIP-based bounds for
the performance guarantee of HBHT and HBHTP can be the same as the best known bounds for IHT and HTP, respectively.
Similar to the sufficient condition δ2k < 0.333 for the performance guarantee of IHTµ in [2,20], the more relaxed condition
δ2k < 0.356 is obtained for the algorithm HBHT in this paper. It is also interesting to observe that the sufficient condition
δ2k < 0.377 for HBHTP is less restrictive than that of HBHT, while the conditions in terms of δ3k for the two algorithms
go other way round.

3.3. Finite convergence

From accurate measurements, the HBHTP can exactly recover a k-sparse signal in a finite number of iterations. The
iteration complexity is given in the next result.

Theorem 3.3. Suppose that the RIC, δ3k, of the measurement matrix A and the algorithmic parameters α and β in HBHTP satisfy
the condition (3.13). Then any k-sparse signal x with ∥x∥0 = k can be exactly recovered by HBHTP from accurate measurements
y := Ax in at most

p∗
=

⎡⎢⎢⎢
log

(√
2C3
η̂µ

)
log

(
1/τ̂

)
⎤⎥⎥⎥ (3.28)

iterations, where µ = minxi ̸=0 |xi|, and η̂, τ̂ , C3 are given in Theorem 3.2.

Proof. Denote by S = Lk(x). For any t ∈ S, by using the definition of up in HBHTP, which is defined as (2.3), and noting
hat xt = 0, we have

|(up)t | =
⏐⏐xt + (1 − α + β)(xp − x)t + α

[
(I − ATA)(xp − x)

]
t − β(xp−1

− x)t
⏐⏐

≤|1 − α + β| · |(xp − x)t | + α
⏐⏐[(I − ATA)(xp − x)

]
t

⏐⏐ + β|(xp−1
− x)t |,

and for any s ∈ S, we have

|(up)s| =
⏐⏐xs + (1 − α + β)(xp − x)s + α

[
(I − ATA)(xp − x)

]
s − β(xp−1

− x)s
⏐⏐

≥ µ − |1 − α + β| · |(xp − x)s| − α
⏐⏐[(I − ATA)(xp − x)

]
s

⏐⏐ − β|(xp−1
− x)s|,

where µ = minxi ̸=0 |xi|. Combining the above two inequalities leads to

|(up)t | − |(up)s| + µ ≤|1 − α + β| · [|(xp − x)t | + |(xp − x)s|] + β[|(xp−1
− x)t | + |(xp−1

− x)s|]

+ α{|[(I − ATA)(xp − x)]t | + |[(I − ATA)(xp − x)]s|}

≤
√
2(|1 − α + β| · ∥(xp − x){s,t}∥2 + α∥[(I − ATA)(xp − x)]{s,t}∥2

+ β∥(xp−1
− x) ∥ ).
{s,t} 2

9
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Since s ∈ S = supp(x), we have |supp(xp − x) ∪ {s, t}| ≤ 2k + 1 ≤ 3k. Using (3.16) and Lemma 2.1(i), we obtain

|(up)t | − |(up)s| + µ ≤
√
2
(
(|1 − α + β| + αδ3k)∥xp − x∥2 + β∥xp−1

− x∥2
)

=

√
2

η̂

(
b̂∥xp − x∥2 + τ̂ (τ̂ − b̂)∥xp−1

− x∥2

)
≤

√
2

η̂
τ̂

(
∥xp − x∥2 + (τ̂ − b̂)∥xp−1

− x∥2

)
, (3.29)

where η̂, τ̂ , b̂ are given in Theorem 3.2, and the last inequality above follows from the fact b̂ < τ̂ . Since x is a k-sparse
ector and ν = 0, then ν ′

= ν + AxS = 0. Hence, (3.21) becomesxp+1
− x


2 ≤ b̂

xp − x

2 + η̂β

xp−1
− x


2 .

With the aid of (3.16) and note that τ̂ (τ̂ − b̂) = η̂β̂ , the inequality above can be further rewritten as

∥xp+1
− x∥2 + (τ̂ − b̂)∥xp − x∥2 ≤ τ̂ (∥xp − x∥2 + (τ̂ − b̂)∥xp−1

− x∥2).

Thus (3.29) reduces to

|(up)t | − |(up)s| + µ ≤

√
2

η̂
C3(τ̂ )p,

where C3 is given by (3.15). After p∗ iterations, where p∗ is given by (3.28), one must have that

|(up∗

)t | − |(up∗

)s| + µ ≤

√
2

η̂
C3(τ̂ )p

∗

< µ,

where the second inequality holds due to the definition of p∗ in (3.28). It implies that |(up∗

)t | < |(up∗

)s| for any s ∈ S
and t ∈ S. This means S = Lk(up∗

). Note that Sp
∗
+1

= Lk(up∗

) at the p∗-th iteration of HBHTP. Thus at the p∗-th iteration,
one has S = Sp

∗
+1. Under the RIP condition which implies that any k columns of A are linearly independent, the system

y = Az has at most one k-sparse solution. Therefore, xp
∗
+1

= x, i.e., the HBHTP successfully recover the k-sparse signal x
after finite number of iterations. ■

4. Stability analysis

An efficient compressed sensing algorithm should be able to recover signals in a stable manner in the sense that when
the problem data (e.g., signal, measurement, noise level) admits a slight change, the quality of signal recovery can still
be guaranteed and the recovery error is still under control. In this section, we establish a stability result for HBHT and
HBHTP, respectively. Recall that for given two integer numbers s and q, the symbol σs(x)q denotes the error (in terms
of ℓq-norm) of the best s-term approximation of the vector x, i.e., σs(x)q := inf{∥x − z∥q : ∥z∥0 ≤ s}. We first give the
following inequalities taken from [2] (see, Theorem 2.5 and Lemma 6.10 therein).

Lemma 4.1. (i) For any z ∈ Rn, σs(z)2 ≤
1

2
√
s∥z∥1. (ii) For any u, v ∈ Rn satisfying max

1≤i≤n
|ui| ≤ min

1≤i≤n
|vi|, one has

∥u∥2 ≤
1

√
n∥v∥1.

We now establish a lemma which is an modification of Lemma 6.23 in [2] with ℓ2-norm.

emma 4.2. Given x, x′
∈ Rn, A ∈ Rm×n, ν ∈ Rm and the scalars φ > 0 and ξ ≥ 0. Let x′ be a k-sparse vector (k ≥ 2) and

:= Lk(x). If

∥xT − x′
∥2 ≤ φ∥AxT + ν∥2 + ξ, (4.1)

hen

∥x − x′
∥2 ≤

1 + 2φ
√
1 + δj

2
√
j

σj(x)1 + φ∥ν∥2 + ξ, (4.2)

here j = ⌊
k
2⌋.

roof. There are only two cases.
Case I: k ≥ 2 is an odd integer number. In this case, |T | = k = 2j + 1. Denote S0 := Lj+1(x) ⊂ T and S1 := T \ S0. It is

not difficult to see that

∥xT∥2 = σj(xS0 )2 ≤
1
√ ∥xS0∥1 =

1
√ σj+1(x)1, (4.3)
2 j 2 j
10
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where the first and final equalities follow from the definition of S0, T and σs(·)q, and the inequality in between follows
from Lemma 4.1(i). There exists an integer r ≥ 2 such that T can be partitioned as T =

⋃r
l=2 Sl, where

S2 = Lj(xT ), S3 = Lj(xT∪S2 ), . . . , Sr−1 = Lj(xT∪S2∪···∪Sr−2
),

Sr = T ∪ S2 ∪ · · · ∪ Sr−1

with cardinalities |Sl| = j for j = 2, . . . , r − 1 and |Sr | ≤ j. Using the triangular inequality together with (2.1), we obtain

∥AxT + ν∥2 ≤

r∑
l=2

∥AxSl∥2 + ∥ν∥2 ≤
√
1 + δj

r∑
l=2

∥xSl∥2 + ∥ν∥2. (4.4)

ased on Lemma 4.1(ii), we observe that

∥xSl∥2 ≤
1
√
j
∥xSl−1∥1, 2 ≤ l ≤ r.

This together with (4.4) implies that

∥AxT + ν∥2 ≤

√
1 + δj

j

r−1∑
l=1

∥xSl∥1 + ∥ν∥2

≤

√
1 + δj

j
∥xS0∥1 + ∥ν∥2

=

√
1 + δj

j
σj+1(x)1 + ∥ν∥2. (4.5)

Combining (4.3), (4.1) with (4.5) leads to

∥x − x′
∥2 ≤∥xT∥2 + ∥xT − x′

∥2

≤
1

2
√
j
σj+1(x)1 + φ

√
1 + δj

j
σj+1(x)1 + φ∥ν∥2 + ξ . (4.6)

Case II: k ≥ 2 is an even integer number. In this case, |T | = k = 2j. Denote S0 := Lj(x) ⊂ T . Repeating the argument
in Case I and using the relation ∥xS0∥1 = σj(x)1 for this case, we obtain the following relation:

∥x − x′
∥2 ≤

1
2
√
j
σj(x)1 + φ

√
1 + δj

j
σj(x)1 + φ∥ν∥2 + ξ . (4.7)

ote that σj+1(x)1 ≤ σj(x)1. Both (4.6) and (4.7) imply the desired relation (4.2) for any positive integer k ≥ 2. ■

By using Lemma 4.2, the main result on the stability of HBHT can be stated as follows.

Theorem 4.1. Suppose that the RIC, δ3k (k ≥ 2), of the matrix A and the parameters α and β satisfy the conditions in (3.3).
et y := Ax+ ν be the measurements of x with measurement errors ν. Then the sequence {xp}, generated by HBHT with initial
oints x1 = x0 = 0, satisfiesx − xp


2 ≤

1 + 2C2
√
1 + δj

2
√
j

σj(x)1 + C2∥ν∥2 + (τ − b + 1)τ p−1
∥x∥2, (4.8)

here j = ⌊
k
2⌋ and C2, τ , b are given in Theorem 3.1.

Proof. According to (3.4), we know

∥xS − xp∥2 ≤ C1τ
p−1

+ C2∥ν
′
∥2 = C1τ

p−1
+ C2∥ν + AxS∥2,

where S = Lk(x). This is the form of (4.1) in Lemma 4.2 with x′
= xp, φ = C2, ξ = C1τ

p−1 and T = S. Hence, it follows
rom (4.2) that

∥x − xp∥2 ≤
1 + 2C2

√
1 + δj

2
√
j

σj(x)1 + C2∥ν∥2 + C1τ
p−1. (4.9)

ubstituting x1 = x0 = 0 into (3.5) yields

C1 = ∥xS∥2 + (τ − b)∥xS∥2 ≤ (τ − b + 1)∥x∥2. (4.10)

ombining (4.9) and (4.10) leads to the desired estimation (4.8). ■
11
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By a similar proof to the above, we obtain the stability result for HBHTP.

heorem 4.2. Suppose that the RIC, δ3k(k ≥ 2), of the matrix A and the parameters α and β satisfy the conditions in (3.13).
et y := Ax+ ν be the measurements of x. Then the iterates {xp}, generated by HBHTP with initial points x1 = x0 = 0, satisfies

∥x − xp∥2 ≤
1 + 2C4

√
1 + δj

2
√
j

σj(x)1 + C4∥ν∥2 + (τ̂ − b̂ + 1)τ̂ p−1
∥x∥2, (4.11)

here j = ⌊
k
2⌋ and C4, τ̂ , b̂ are given in Theorem 3.2.

From (4.8) and (4.11), we see that the recovery error ∥x − xp∥2 can be controlled and can be measured in terms of
σj(x)1, measurement errors, and the number of iterations performed. These results claims that a slight variance of these
factors will not significantly affect the recovery error, and that if the signal is j = ⌊k/2⌋-compressible (i.e., σj(x)1 is small)
and if the measurements are accurate enough, then the signal will be recovered by the proposed algorithms provided that
enough number of iterations are performed.

5. Numerical experiments

All mentioned experiments in this section were performed on a PC with the processor Intel(R) Core(TM) i7-10700 CPU
@ 2.90 GHz and 16 GB memory. In these experiments, the measurement matrices A ∈ Rm×n are Gaussian random matrices
whose entries are independent and identically distributed (iid) and follow the standard normal distribution N (0, 1) in
Section 5.1 and N (0,m−1) in Sections 5.2 and 5.3, respectively. All sparse vectors x∗

∈ Rn are also randomly generated,
whose nonzero entries are iid and follow N (0, 1) and the position of nonzero entries follows the uniform distribution.

5.1. Comparison of performance

We first demonstrate some numerical results on recovery success rates of HBHT and HBHTP and the average number
of iterations and CPU time required by these algorithms to achieve the recovery success of sparse signals. We compare
their performances with the iterative algorithms OMP, SP, CoSaMP, HTP and IHT. We let HBHT and HBHTP start from
x1 = x0 = 0 and other iterative algorithms start from x0 = 0. The size of the matrices in this experiment is 400×800. All
iterative algorithms are allowed to perform up to 50 iterations (which is set as the maximum number of iterations in our
experiments), except for OMP which, by its structure, is performed exactly k iterations, equal to the sparsity level of the
target signal x∗. For every given sparsity level k, 100 random examples of (A, x∗) are generated to estimate the success
rates of algorithms. An individual recovery is called success if the solution produced by an algorithm satisfies the criterion

∥xp − x∗
∥2/∥x∗

∥2 ≤ 10−3. (5.1)

Let us first compare the algorithms in the case of A being un-normalized.

5.1.1. Performance with unnormalized matrices
The performance of iterative-type thresholding methods is closely related to the choice of stepsize in each step.

When A is un-normalized/unscaled, initial simulations indicate that α = 10−3 is a proper choice for IHT and HTP,
α ∈ [10−3, 2×10−3

] and β ∈ (0, 0.6] are proper choices for HBHT, and α ∈ [10−3, 8×10−3
] and β ∈ (0, 0.7] are suitable

for HBHTP, where the range for β is implied from (3.22). We now start to compare algorithms using both accurate and
inaccurate measurements. Given a random pair of (A, x∗), the accurate and inaccurate measurements are given respectively
by y := Ax∗ and y := Ax∗

+ ϵh, where ϵ = 0.008 and h is a standard Gaussian random noise vector. We use the fixed
parameters α = 1.5 × 10−3 and β = 0.6 in HBHT and α = 7 × 10−3 and β = 0.7 in HBHTP. The estimated success rates
of the algorithms are shown in Fig. 1 in which the sparsity level k is ranged from 1 to 297 with stepsize 4. It shows that
the HBHTP generally outperforms the OMP, SP and HTP, and it might perform clearly better than CoSaMP, HBHT and IHT.
We also observe from the experiments that the success rate of HBHT is slightly worse than that of CoSaMP in noiseless
settings but it might be better than CoSaMP in noisy settings.

5.1.2. Performance with normalized matrices
The existing theory claims that the IHT and HTP with a larger stepsize such as α = 1 remains convergent if the

matrix satisfies the RIP, and it is well known that the normalized Gaussian matrix Ā :=
1

√
mA may satisfy the RIP in high

probability (see, e.g., Chapter 9 in [2] for details). In terms of a normalized matrix, the problem (1.1) is equivalent to
argmin

z
{
ȳ − Āz

2
2 : ∥z∥0 ≤ k}, where ȳ =

1
√
my. The entries of such a normalized Gaussian matrix follow the distribution

N (0,m−1). By taking into account the theoretical results in previous sections and testing for the values of parameters
(α, β), we found the choices α ∈ [0.4 + 2β, 1.6] and β ∈ (0, 0.6] are suitable for HBHT and α ∈ [0.3 + 2β, 1.7] and
β ∈ (0, 0.7] are suitable for HBHTP to achieve a good performance. We repeated the experiments in Section 5.1.1 by
setting the stepsize α = 1 for IHT and HTP, the specific values α = 0.6 and β = 0.1 for HBHT and α = 1.7 and β = 0.7
12



Z.-F. Sun, J.-C. Zhou, Y.-B. Zhao et al. Journal of Computational and Applied Mathematics 430 (2023) 115264

p

β

f
t
a
o
s
t

5

(
c
i
t
t

T

Fig. 1. Comparison of success frequencies (rates) of algorithms for signal recovery with accurate and inaccurate measurements, respectively. The
arameters α = 1.5 × 10−3 and β = 0.6 are set for HBHT and α = 7 × 10−3 and β = 0.7 for HBHTP.

Fig. 2. Comparison of success frequencies of algorithms with accurate and inaccurate measurements, respectively. The parameters α = 0.6 and
= 0.1 are set in HBHT, and α = 1.7 and β = 0.7 are set in HBHTP.

or HBHTP. The results are demonstrated in Fig. 2 which appear to be similar to that of Fig. 1. However, one can observe
hat the normalization of the matrix, accordingly enlarged stepsize, and the choices of parameters do affect the recovery
bility of HBHT, HBHTP, IHT and HTP to a certain degree. Again, it seems that the HBHTP performs generally better than
ther algorithms in noiseless and noisy settings, and the HBHT may perform better than CoSaMP and IHT in some noisy
ituations. Compared to IHT and HTP, the heavy-ball-based technique does play a vital role in speeding up and enhancing
he performance of the traditional thresholding algorithms for sparse signal recovery.

.1.3. Average number of iterations and time
We now compare the average number of iterations and CPU time required by several algorithms to meet the criterion

5.1) with accurate measurements. The testing environment is the same as Section 5.1.2. Within 50 iterations, if xp satisfies
riterion (5.1), the algorithm terminates and the number of iterations p is recorded. Otherwise, the number of iterations
s recorded as 50. For OMP, the number of iterations is equal to the sparsity level of the input signal. Fig. 3(a) indicates
hat the average number of iterations required by HBHTP is lower than that of SP and HTP, and might be much lower
han that of OMP, CoSaMP, HBHT and IHT especially when the sparsity level k is high.

Fig. 2(a) indicates that all k-sparse signals with k ≤ 80 can be recovered by all mentioned algorithms except IHT.
hus we focus on the signals with sparsity levels k ≤ 80 to compare the average time consumed by algorithms except
13
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Fig. 3. Comparison of average number of iterations and time taken by algorithms to meet the recovery criterion (5.1) with accurate measurements.
The parameters α = 0.6 and β = 0.1 are set in HBHT and α = 1.7 and β = 0.7 in HBHTP.

HT to meet the criterion (5.1). The results are demonstrated in Fig. 3(b), from which one can see that OMP takes more
ime than other algorithms to recover the signal, and that the average time taken by SP, CoSaMP, HBHTP, HBHT and HTP
ncreases slowly in a linear manner with respect to the sparsity level k, and the average time consumed by SP and CoSaMP
s approximately twice of HBHT, HBHTP and HTP. This indicates that the proposed algorithms have some advantage in
ime saving for signal recovery.

.2. Phase transition

We further investigate and compare the performances of algorithms through the empirical PTCs and ASM introduced
n [12,40]. All m×n matrices in this subsection are Gaussian random matrices with fixed n = 212, whose entries are iid and
follow the distribution N (0,m−1). The parameters (α, β) in HBHT and HBHTP are set the same exactly as in Section 5.1.2.

5.2.1. Phase transition curves
Denote by δ = m/n and ρ = k/m. The PTC of an algorithm separates the (δ, ρ) space into success and failure regions.

The region below the curve, called recovery region, represents the problem instances with (δ, ρ) that can be exactly or
approximately solved by the algorithm, while the region above the curve indicates the problem instances with (δ, ρ) to
which the algorithm does not appear to find their correct solutions. The empirical PTCs demonstrated in this section are
logistic regress curves identifying the 50% success rate for the given algorithm applying to a given problem class. This
method was first introduced in [12,40].

We now briefly introduce the mechanism for generating such a curve. The interested readers may find more detailed
information about this from the Refs. [12,40]. To generate the PTCs and ASM, we consider 25 different values of m = ⌈δ ·n⌉
where

δ ∈ {0.02, 0.04, 0.06, 0.08} ∪ {0.1, 0.1445, . . . , 0.99}, (5.2)

where the interval [0.1, 0.99] was equally divided into 20 parts. For every value of m, we collect 50 groups of sparsity
levels k = ⌈ρ ·m⌉ where ρ is ranged from 0.02 to 1 with stepsize 0.02. For a fixed m, the recovery phase transition region
for each algorithm is estimated by the interval [kmin, kmax], where kmin and kmax can be determined by a bisection method.
They are the critical values to ensure that the recovery success rate is at least 90% for any k < kmin and at most 10% for
any k > kmax. For simplicity, we introduce the notations kj

∆
= kmin + ⌈j · ∆k⌉(j = 0, 1, . . . , J), where ∆k = (kmax − kmin)/J

and J = kmax − kmin if kmax − kmin < 50; otherwise J = 50. When estimating the success rate of an algorithm, Nb = 10
problem instances are tested for each given (k,m, n), where k = kj, j = 0, 1, . . . , J . Based on the success rates, the PTCs
an be obtained from the following logistic regression model [12,40]:

min
(γ0,γ1)

J∑
j=0

⏐⏐⏐⏐g(kj/m) −
suc(kj,m, n)

Nb

⏐⏐⏐⏐ ,
where

g(ρ) =
1

,

1 + exp(−γ0(1 − γ1ρ))

14
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a

Fig. 4. The 50% success rate PTCs for six algorithms.

nd suc(kj,m, n) is the number of recovery success among Nb problem instances for each (kj,m, n), j = 0, 1, . . . , J . The
50% success recovery PTCs are defined by g(ρ) = 0.5.

The curves for the algorithms HBHT, HBHTP, IHT, HTP, CoSaMP and SP are summarized in Fig. 4. In this comparison,
the parameters α = 0.6 and β = 0.1 are used in HBHT and α = 1.7 and β = 0.7 in HBHTP. The accurate and inaccurate
measurements are given by y = Ax∗ and y = Ax∗

+ ϵh, respectively, where h is a standard Gaussian random vector and
ϵ = 0.001. From Fig. 4(a) and (b), we see that HBHTP has the highest PTC. This indicates that HBHTP may outperform
the other five algorithms for sparse signal recovery in both noiseless and noisy environments. One can also see that the
PTCs of SP, CoSaMP, HBHT and IHT are below the line ρ = 0.5 as δ ≥ 0.5. This implies that the recovery performance of
these algorithms would not remarkably be improved even when the number of measurements is increased. By contrast,
the PTCs of HBHTP and HTP are twice as high as those of SP and CoSaMP as δ → 1. To see the influence of noise levels on
the performance of algorithms, the PTCs for HBHT and HBHTP with three different noise levels ϵ ∈ {0, 10−3, 5×10−3

} are
demonstrated in Fig. 4(c), from which one can observe that the curves of HBHT and HBHTP do not significantly change
with respect to the noise level when the noise level is relatively low. This sheds light on the stability of the two algorithms
in signal recovery.

5.2.2. Algorithm selection map
The intersection of the recovery regions below the PTCs indicates that multiple algorithms are capable of signal

recovery. To choose an algorithm, one might also consider the computational time for recovery. As a result, the so-called
ASM was introduced in [12,40], which demonstrates the least average recovery time of the algorithms with accurate
15
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Fig. 5. Selection map with accurate measurements.

measurements. To draw an ASM, for each δ taking the values in (5.2), 10 problem instances are tested for every algorithm
on the sampled phase space with the mesh (δ, ρ) with ρ = {j/50, j = 1, 2, . . . , 50} until the success rate is lower than
90%. The algorithm with least computational time will be identified on the map. The map is shown in Fig. 5, which
clearly depicts two regions in the phase plane, wherein HBHTP is the fastest algorithm for solving problem instances with
relatively large ρ, while the HTP reliably recovers the signal in least time in other cases.

After identifying the fastest algorithm, further information on the average recover time of algorithms are given in Fig. 6.
The minimum average recovery time taken by the fastest algorithm is displayed in Fig. 6(a). When ρ ≤ 0.3, the minimal
average run time of algorithms is close to each other for any δ ∈ (0, 1). However, when ρ > 0.3, we see that the larger the
value of ρ, the more average run time is required by the algorithm when δ > 0.6. The ratios of the average recovery time
for the algorithms HBHTP, HBHT, HTP, SP and CoSaMP against that of the fastest algorithm are displayed in Fig. 6(b)–(f),
respectively. Fig. 6(b) shows that the larger the value of ρ, the smaller the ratio for a fixed δ, and the ratio for HBHTP
is less than 1.5 when ρ ≥ 0.25 or δ ≤ 0.1. By contrast, Fig. 6(c)–(f) show that the larger the value of ρ, the larger the
atios for those four algorithms. This phenomenon indicates that HBHTP might work better than other algorithms when
he sparsity level k is relatively high. We also observe that HBHTP and HTP are comparable to each other, and that HBHT,
P and CoSaMP often consume more than twice of the minimal average time. One can also observe that the ratios for SP
nd CoSaMP can be three and five times higher, respectively, when ρ is large.
Finally, we demonstrate the change of average recovery time of algorithms against the factor ρ. The results for three

ifferent parameters

δ ∈ {0.2780, 0.5005, 0.7230}

re given in Fig. 7. For ρ ≤ 0.2, the average recover time of HBHTP, SP and CoSaMP are similar to each other. For
∈ [0.2, 0.5], the time consumed by HBHTP and HTP increases slowly compared to that of SP and CoSaMP as the sparsity

evel k increases. Moreover, the computational time of HTP approaches and surpasses that of HBHTP for ρ ≥ 0.4 in Fig. 7(b)
nd for ρ ≥ 0.5 in Fig. 7(c), respectively. Finally, we find that only HBHTP is typically able to recover the sparse signals
ell into the region of the far right of Fig. 7(a)–(c). This provides some evidence to show that the HBHTP might admit a
ertain advantage in sparse signal recovery over several existing algorithms especially when ρ is relatively large.

.3. Application to image reconstruction

The performances of HBHT and HBHTP in image reconstruction are also verified via a few standard test images
ncluding Baboon, Barbara, Goldhill, Lena and Peppers. These images have the same size n × n with n = 512. The sparse
epresentation of images are achieved by the discrete wavelet transform with ‘sym8’ wavelet. In this experiment, all
lgorithmic parameters of HBHT and HBHTP are set exactly as in Sections 5.1.2 and 5.2 and the normalized Gaussian
atrix is taken as the measurement matrix. The input sparsity-level in HBHT and HBHTP is set as k = ⌈n/10⌉.
16
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r

Fig. 6. (a) The minimum average time of algorithms; (b)–(f) The ratios of average time for several algorithms against the fastest one.

The reconstruction quality with HBHT and HBHTP is measured by the standard PSNR in three different sampling

ates δ = m/n, as shown in Tables 3 and 4, respectively. The first row of Tables 3 and 4 corresponds to the noiseless

17
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Fig. 7. Average recovery time with respect to the change of ρ under three different fixed values of δ.

Table 3
Comparison of PSNR (dB) for HBHT with different sampling rates.

δ Baboon Barbara Goldhill Lena Peppers

0.3 27.45 27.34 27.2 27.25 27.16
Noiseless 0.4 27.62 27.08 27.05 27.36 27.12
cases 0.5 29.48 31.86 31.19 34.03 32.77

0.3 27.49 27.27 27.43 27.19 27.12
Noisy 0.4 27.12 27.18 27.26 27.08 27.09
cases 0.5 29.2 29.55 30.03 30.67 30.49

situations and the second row corresponds to the noisy situations where the Gaussian white noise with mean 0 and
variance 2.5× 10−3 is added into the image by using the ‘imnoise’ function in Matlab. From Table 3, we observe that the
PSNR values of all images are less than 27.7 dB in both noiseless and noisy settings as δ = 0.3 or 0.4. This is normal since
the sampling is not enough to ensure a quality reconstruction. However, the PSNRs are greater than or equal to 29.2 dB
as δ is increased to 0.5. Table 4 indicates that HBHTP is a robust reconstruction algorithm in both noiseless and noisy
scenarios.

As an example, the reconstructed ‘Lena’ images by HBHT and HBHTP using different sampling rates are demonstrated
in Figs. 8 and 9, respectively, in which the second rows are the results corresponding to noisy cases and 2–4 columns are
the ones reconstructed by the algorithms. Fig. 8 indicates that HBHT fails to reconstruct images as δ = 0.3 and 0.4, while
it successfully reconstruct the image when δ = 0.5 and in noisy situations. This is consistent with the result in Table 3.
18
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Fig. 8. Performance of HBHT for Lena with different sampling rates.

Table 4
Comparison of PSNR (dB) for HBHTP with different sampling rates.

δ Baboon Barbara Goldhill Lena Peppers

0.3 28.46 30.27 29.58 31.76 30.63
Noiseless 0.4 28.76 31.78 30.43 33.67 32.44
cases 0.5 29.18 32.76 31.17 34.75 33.42

0.3 28.24 28.93 28.78 29.27 29.14
Noisy 0.4 28.48 29.42 29.35 29.83 29.64
cases 0.5 28.78 29.84 29.66 30.28 30.19

The quality of reconstructed images is improved using HBHTP and relatively higher values of δ in both noiseless and noisy
ettings.

. Conclusions

Incorporating the heavy-ball acceleration technique into the IHT and HTP methods leads to the HBHT and HBHTP
lgorithms for sparse signal recovery. The guaranteed performance of these algorithms has been established under the
IP assumption and suitable conditions for the choice of algorithmic parameters. The finite convergence of HBHTP and
ecovery stability of the two algorithms were also shown in this paper. The numerical performance of algorithms has been
nvestigated from several difference perspectives including the recovery success rate, average number of iterations and
omputational times. Comparison of the proposed algorithms with a few existing ones is also made through the phase
ransition analysis including the PTC and ASM. Simulations on random problem instances indicate that under proper
hoices of parameters, HBHTP is an efficient algorithm for sparse signal recovery and it may outperform several existing
lgorithms in many cases.
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Fig. 9. Performance of HBHTP for Lena with different sampling rates.
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