
Journal of Scientific Computing           (2023) 96:93 
https://doi.org/10.1007/s10915-023-02315-1

Heavy-Ball-Based Optimal Thresholding Algorithms
for Sparse Linear Inverse Problems

Zhong-Feng Sun1 · Jin-Chuan Zhou1 · Yun-Bin Zhao2

Received: 2 January 2023 / Revised: 19 July 2023 / Accepted: 27 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Linear inverse problems arise in diverse engineering fields especially in signal and image
reconstruction. The development of computational methods for linear inverse problems with
sparsity is one of the recent trends in this field. The so-called optimal k-thresholding is a
newly introduced method for sparse optimization and linear inverse problems. Compared to
other sparsity-aware algorithms, the advantage of optimal k-thresholding method lies in that
it performs thresholding and error metric reduction simultaneously and thus works stably
and robustly for solving medium-sized linear inverse problems. However, the runtime of
this method is generally high when the size of the problem is large. The purpose of this
paper is to propose an acceleration strategy for this method. Specifically, we propose a
heavy-ball-based optimal k-thresholding algorithm and its relaxed variants for sparse linear
inverse problems. The convergence of these algorithms is shown under the restricted isometry
property. In addition, the numerical performance of the heavy-ball-based relaxed optimal k-
thresholding pursuit (HBROTP) has been evaluated, and simulations indicate that HBROTP
admits robustness for signal and image reconstruction even in noisy environments.
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1 Introduction

In recent years, the linear inverse problem has gained much attention in various fields such
as wireless communication [10, 19] and signal/image processing [4, 9, 25, 26, 35, 43, 47,
52]. A typical linear inverse problem is about the reconstruction of unknown data z ∈ R

r

from the acquired linear measurements

y = Φz + ν, (1.1)

where Φ ∈ R
m×r is a given measurement matrix, y ∈ R

m are the acquired measurements,
and ν ∈ R

m are the measurement errors. In this paper, we consider the case m < r , for
which it is generally impossible to reconstruct the data z from the linear system (1.1) unless
z possesses a certain structure such as sparsity. Fortunately, in many practical applications,
the signal to recover possesses certain sparse structure or it can be sparsely represented under
a suitable transformation. For instance, many natural image can be sparsely represented via
wavelet transforms. Suppose that z can be sparsely represented via the basis Ψ ∈ R

r×n

(r ≤ n), i.e., z = Ψ x where the vector x ∈ R
n is either k-sparse or k-compressible for some

integer number k � n. A vector is said to be k-sparse if ‖x‖0 ≤ k, and k-compressible if x
can be approximated by a k-sparse vector, where ‖ ·‖0 denotes the number of nonzero entries
of a vector. With a sparse representation of z, the model (1.1) can be written as

y = Ax + ν, (1.2)

where A = ΦΨ ∈ R
m×n (m < n) is still referred to as a measurement matrix. In this

case, the problem (1.1) is transformed to the so-called sparse linear inverse (SLI) problem
which is to reconstruct the sparse data x via the linear system (1.2). Once the sparse data x is
reconstructed, the original data z can be immediately obtained by setting z := Ψ x . The SLI
problem can be formulated as an optimization problem (see, e.g., [4, 9, 19, 25, 28, 43, 49]).
Typically, it can be formulated as the sparse optimization problem

min
u

{‖y − Au‖22 : ‖u‖0 ≤ k}. (1.3)

It can also be formulated as the �1-minimization (basis pursuit) problem

min
u

{‖u‖1 : Au = y} (1.4)

as well as the LASSO problem

min
u

‖y − Au‖22 + μ‖u‖1, (1.5)

where μ > 0 is called a regularization parameter. All these models, (1.3)-(1.5), are widely
used in signal and image reconstruction with sparsity.

Depending on the problem formulations, several classes of algorithms for SLI problems
have been developed over the past decades, including the thresholding algorithms [25,
26, 28], greedy methods [20, 42, 48], convex optimization [14, 15, 18, 57], nonconvex
optimization [17], and Bayesian methods [45, 51]. In this paper, we focus on the model (1.3)
forwhich the thresholding algorithms are particularly convenient to develop.The thresholding
method was first proposed by Donoho and Johnstone [23]. It has experienced a significant
development since 1994 and has evolved into a large family of algorithms which includes
the hard thresholding [6, 8, 9, 27, 33, 38], soft thresholding [21, 22, 24] and optimal k-
thresholding algorithms [56, 58]. It is worth stressing that an advantage of thresholding
methods is that the algorithms can guarantee the generated points being feasible to the
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problem (1.3). The simplest thresholding method might be the iterative hard thresholding
(IHT) [8]. The combination of IHT and orthogonal projection yields the hard thresholding
pursuit (HTP) [27]. Due to low computational complexity, IHT and HTP have been widely
used in signal reconstruction with compressive samplings [6, 7, 9, 33].

However, as pointed out in [56, 58], performing hard thresholding on non-sparse iterates
may not necessarily reduce the objective value of (1.3) and thus may cause numerical oscil-
lation during iterations. Thus the optimal k-thresholding operator was introduced in [56]
(see also [58]) to alleviate such a weakness of hard thresholding. This operator may perform
thresholding on iterates and, in themeantime, reduce the objective value of (1.3). The optimal
k-thresholding (OT) and optimal k-thresholding pursuit (OTP) algorithms are first developed
in [56]. Recall that the optimal k-thresholding of a given vector v ∈ R

n is defined as

min
w

{‖y − A(v ◦ w)‖22 : eTw = k, w ∈ {0, 1}n}, (1.6)

where e = (1, 1, . . . , 1)T ∈ R
n , {0, 1}n is the set of n-dimensional binary vectors and

v ◦ w := (v1w1, . . . , vnwn)
T denotes the Hadamard product of two vectors. However, from

a computational point of view, it is generally more convenient to solve the following convex
optimization

min
w

{‖y − A(v ◦ w)‖22 : eTw = k, 0 ≤ w ≤ e}, (1.7)

which is a tight relaxation of (1.6). This problem is referred to as data compressing problem
in [56, 58]. Based on (1.7), the relaxed optimal k-thresholding (ROTω) and relaxed optimal
k-thresholding pursuit (ROTPω) algorithms were proposed in [56, 58], where ω represents
times of data compression that are performed in the algorithms. When ω = 1, the algorithm
is termed as ROTP. Some modifications of ROTP using partial gradient and Newton-type
search direction were studied recently in [39, 40]. While the convex optimization (1.7) can
be efficiently solvedby existing convexoptimization solvers, however, solving such a problem
remains time-consuming when the size of the problem is large. Thus it is important to study
how the computational cost of ROTP-type methods might be reduced and how these methods
can be accelerated by integrating an acceleration technique such as the heavy-ball (HB) or
Nesterov’s technique. By using linearization together with a certain binary regularization
method, the so-called nature thresholding (NT) algorithm is developed recently in [59],
whose computational complexity is significantly lower than that of ROTPω since the NT
algorithm is able to avoid solving any optimization problem like (1.7). In this paper, we
investigate the ROTP-type algorithms from the acceleration perspective by showing that the
HB technique is able to improve the performance of the ROTP-type algorithms.

The HB method introduced by Polyak [44] can be seen as a two-step method which
combines the momentum term and gradient descent direction. In recent years, HB has found
wide applications in image processing, data analysis, distributed optimization and undirected
networks [3, 31, 32, 34, 36, 41, 50, 53]. The theoretical analysis (global convergence and
local convergence rate) for HB methods has been investigated by several researchers. For
example, the linear convergence rate of HB for unconstrained convex optimization problem
was established by Aujol et. al [3]; Mohammadi et. al [41] analyzed the relation between
the convergence rate of HB and its variance amplification when the objective function of the
problem is strongly convex and quadratic; Xin and Khan [53] showed that the distributed
HB method with appropriate parameters attains a global R-linear rate, and it has potential
acceleration compared with some first-order methods for ill-conditioned problems. Other
acceleration techniques including the Nesterov’s one can be found in [32, 34, 36, 41].
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In this paper, we merge the optimal k-thresholding and HB acceleration technique to form
the following algorithms for the SLI problem formulated as (1.3):

• Heavy-ball-based optimal k-thresholding (HBOT),
• Heavy-ball-based optimal k-thresholding pursuit (HBOTP),
• Heavy-ball-based relaxed optimal k-thresholding (HBROTω),
• Heavy-ball-based relaxed optimal k-thresholding pursuit (HBROTPω),

where the integer parameterω denotes the number of times for solving (1.7) at every iteration.
The global convergence of these algorithms is established in this paper under the restricted
isometry property (RIP) introduced by Candès and Tao [14], and the main results are sum-
marized in Theorems 1 and 2. The performances of HBROTP (i.e., HBROTPω with ω = 1)
and several existing algorithms such as ROTP2 [56], partial gradient ROTP (PGROTP) [40],
�1-minimization [18], orthogonal matching pursuit (OMP) [25, 48] and projected linearized
Bregmanmethod (PLB) [11] are compared through numerical experiments. The phase transi-
tion with Gaussian random data is adopted to demonstrate the performances of the proposed
algorithms for SLI problems.

The algorithmdevelopment for linear inverse problems is usuallymodel-based in the sense
that different formulations of the problem require different algorithms. The �1-minimization
method is naturally applied to the model (1.4) and a more general convex optimization solver
can be directly used to handle the LASSO problem (1.5). However, �1-minimization and
LASSO solvers are not convenient to solve the problem (1.3) for which a thresholdingmethod
might be more suitable. The optimal k-thresholding method is proposed to enhance the
success rates and stability of existing hard thresholding algorithms. Unlike �1-minimization
and LASSO solvers, the hard or optimal k-thresholding procedures can reconstruct any
prescribed (interested) k significant components of the target signals without the need to
reconstruct the whole signal. Also, recent study in [59] indicates that a certain modification
of the optimal k-thresholding method may lead to a fast and efficient algorithm which has
far lower computational cost than most existing algorithms including �1-minimization and
LASSO solvers. Thus a further study of the optimal k-thresholding algorithms on their
acceleration, simplification and modification remains interesting and important from both
viewpoints of practical applications and algorithmic development itself.

While our discussion in this paper is focused on hard/optimal thresholding algorithms, it
is worth briefly mentioning the class of soft thresholding methods which is widely used for
signal processing as well. The soft thresholding method can be derived in different ways.
Taking the model (1.4) as an example, a soft thresholding method can be developed from the
Bregman regularization framework [54], which involves solving the convex subproblem (1.5)
at each iteration.Basedon (1.5), using linearization and �2-proximity can lead to the linearized
Bregman (LB)methods [13, 54, 55], which is a class of soft thresholdingmethods.Moreover,
linearization combined with Krylov subspace projection can also yield a soft thresholding
method such as the PLB in [11]. Other soft thresholding methods can be found in [4, 10, 37].
The soft thresholding method needs to select a regularization parameter, but how to select
such a parameter so that the algorithm can guarantee to solve a SLI problem remains an
open question. The numerical experiments in Sects. 5.1 and 5.3 indicate that the HBROTP
algorithm proposed in this paper might be more stable and robust than �1-minimization and
PLB for data reconstruction in many cases.

This paper is organized as follows. In Sect. 2, we introduce some notations, definitions,
useful inequalities and algorithms. In Sect. 3, we discuss the error bounds and convergence of
HBOT and HBOTP under the RIP. The error bounds for HBROTω and HBROTPω are given
in Sect. 4. Numerical results from synthetic signals and real images are reported in Sect. 5.
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2 Preliminary and Algorithms

2.1 Notations

Denote by N := {1, 2, . . . , n}.Given a subsetΩ ⊆ N , Ω := N\Ω denotes the complement
set of Ω and |Ω| denotes its cardinality. For a vector z ∈ R

n , the support of z is represented
as supp(z) := {i ∈ N : zi �= 0}, and the vector zΩ ∈ R

n is obtained by zeroing out the
elements of z supported on Ω and retaining those supported on Ω. Given the sparse level k,
Lk(z) denotes the index set of the k largest absolute entries of z. As usual, Hk(z) := zLk (z)

is called the hard thresholding of z. The symbols ‖ · ‖1 and ‖ · ‖2 represent �1-norm and
�2-norm of a vector, respectively. Throughout the paper, e denotes the vector of ones. Wk

and Pk are two sets in R
n defined as

Wk = {w ∈ R
n : eTw = k, w ∈ {0, 1}n}, Pk = {w ∈ R

n : eTw = k, 0 ≤ w ≤ e}.

2.2 Definitions and Basic Inequalities

Let us first recall the restricted isometry property (RIP) of a matrix and the optimal k-
thresholding operator Z#

k (·).
Definition 1 [14] Given a matrix A ∈ R

m×n with m < n, the kth order restricted isometry
constant (RIC) of A, denoted by δk, is the smallest nonnegative number δ such that

(1 − δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22 (2.1)

for all k-sparse vectors u ∈ R
n . The matrix A is said to satisfy the RIP of order k if δk < 1.

Definition 2 [56, 58] Given a vector u ∈ R
n , let w∗(u) be the solution of the binary

optimization problem

min
w

{
‖y − A(u ◦ w)‖22 : w ∈ Wk

}
.

Then the k-sparse vector Z#
k (u) := u ◦ w∗(u) is called the optimal k-thresholding of u, and

Z#
k (·) is called the optimal k-thresholding operator.

The two lemmas below will be used for the analysis in Sects. 3 and 4.

Lemma 1 [27] Let u ∈ R
n, v ∈ R

m, W ⊆ N and t ∈ N .

(i) If |W ∪ supp(u)| ≤ t , then
∥∥∥
[
(I − AT A)u

]
W

∥∥∥
2

≤ δt‖u‖2.
(ii) If |W | ≤ t , then

∥∥∥
(
AT v

)
W

∥∥∥
2

≤ √
1 + δt‖v‖2.

Lemma 2 [46] Let {a p} ⊆ R (p = 0, 1, . . . ) be a nonnegative sequence satisfying

a p+1 ≤ b1a
p + b2a

p−1 + b3

for p ≥ 1, where b1, b2 and b3 ≥ 0 are constants and b1 + b2 < 1. Then

a p ≤ θ p−1 (a1 + (θ − b1)a
0)+ b3

1 − θ
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for p ≥ 2, where 0 ≤ θ < 1 is a constant given by θ = (b1 +
√
b21 + 4b2)/2 < 1.

2.3 Algorithms

Given iterates x p−1 and x p , the heavy-ball search direction is defined as

d p = αAT (y − Ax p) + β(x p − x p−1),

where α > 0 and β ≥ 0 are two parameters. We use the optimal k-thresholding operator
Z#
k (·) to generate the new iterate x p+1, i.e.,

x p+1 = Z#
k (x

p + d p),

which is called the heavy-ball-based optimal k-thresholding (HBOT) algorithm. Combining
HBOT and orthogonal projection (i.e., the least squares problem (2.4) below) leads to the
heavy-ball-based optimal k-thresholding pursuit (HBOTP) algorithm. HBOT and HBOTP
can be seen as the multi-step extensions of the OT and OTP algorithms in [56, 58]. The two
algorithms are formally described as follows.

HBOT and HBOTP algorithms. Input the data (A, y, k) and two initial points x0 and
x1. Choose the parameters α > 0 and β ≥ 0.

S1 At x p , set

u p = x p − αAT (Ax p − y) + β(x p − x p−1). (2.2)

S2 Solve the optimization problem

w∗ = argmin
w

{‖y − A(u p ◦ w)‖22 : eTw = k, w ∈ {0, 1}n}. (2.3)

S3 Generate the next iterate x p+1 as follows:

For HBOT, let x p+1 = u p ◦ w∗.
For HBOTP, let S p+1 = supp(u p ◦ w∗) and x p+1 be the solution to the least squares
problem

x p+1 = arg min
x∈Rn

{‖y − Ax‖22 : supp(x) ⊆ S p+1}. (2.4)

Repeat S1-S3 above until a certain stopping criterion is met.
In general, the computational cost for solving the binary optimization problem (2.3) is

usually high [12, 16]. Replacing (2.3) by its convex relaxation

argmin
w

{
‖y − A(u p ◦ w)‖22 : w ∈ Pk

}

yields the next heavy-ball-based relaxed optimal k-thresholding (HBROTω) and the
heavy-ball-based relaxed optimal k-thresholding pursuit (HBROTPω) algorithms, where ω

represents the times of solving such a convex relaxation problem at each iteration (which,
as pointed out in [56], can be interpreted as the times of data compression within each iter-
ation). As ω = 1, we simply use HBROT and HBROTP to denote the algorithms HBROT1
and HBROTP1, respectively. Clearly, when α = 1 and β = 0, HBROTω and HBROTPω

reduce, respectively, to ROTω and ROTPω in [58].
HBROTω and HBROTPω algorithms. Input the data (A, y, k), two initial points x0, x1

and ω. Choose the parameters α > 0 and β ≥ 0.
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S1 At x p , calculate u p by (2.2).
S2 Set v ← u p . Perform the following loops to produce the vectors w( j)( j = 1, . . . , ω):

for j = 1 : ω do

w( j) = argmin
w

{‖y − A(v ◦ w)‖22 : eTw = k, 0 ≤ w ≤ e}, (2.5)

and set v ← v ◦ w( j). end
S3 Let x� = Hk(u p ◦ w(1) ◦ · · · ◦ w(ω)). Generate the next iterate x p+1 as follows:

For HBROTω, let x p+1 = x�.
For HBROTPω, let S p+1 = supp(x�), and x p+1 be the solution to the least squares
problem

x p+1 = arg min
x∈Rn

{‖y − Ax‖22 : supp(x) ⊆ S p+1}. (2.6)

Repeat S1-S3 above until a certain stopping criterion is met.
The choice of stopping criterions depends on the application scenarios. For instance, one

can simply prescribe the maximum number of iterations, pmax,which allows the algorithm to
performa total of pmax iterations.One can also terminate the algorithmwhen‖y−Ax p‖2 ≤ ε,

where ε > 0 is a prescribed tolerance depending on the noise level.

Remark 1 The common feature of the proposed algorithms and existing hard-type threshold-
ing algorithms is that the solutions generated by the algorithms depend on the input value
of k, which reflects the user’s interest in reconstructing how many significant components
of the target signal x∗ whose sparsity level is denoted by k∗. In many scenarios, one needs
to reconstruct only a few largest components in magnitude of the target signal, instead of
the whole signal. In such cases, the user is free to set the desired number k for the proposed
algorithms. The quality of reconstruction depends on the input value of k. In fact, the main
theorems established in later sections imply that under the RIP of certain order k̂, the solu-
tion generated by the algorithms is the best k-term approximation to the true signal x∗ when
k < k∗, and it coincides with x∗ when k satisfies that k∗ ≤ k < k̂. When k ≥ k̂, there would
be no guarantee for the proposed algorithms (including existing ones) to recover the signal.
If the user expects to reconstruct the whole signal as possible, some information from theory
and numerical experiments might be useful for the choice of k. For instance, we may choose
k as follows.

1) The prior information on the sparsity level k∗ of the signal might be available in some
situations. In this case, just set k = k∗.

2) It is well known that the signal can be very likely to be recovered by a certain algorithm
if its sparsity level k∗ is lower than the half of the spark of the measurement matrix in
R
m×n [25]. So it makes sense to choose k < (m+1)/2 since the spark is bounded above

by m + 1.
3) A large body of simulations and applications indicate that many algorithms work well

when the sparsity level of signal is lower than m/3, and many such signals can be
generally reconstructed by some existing algorithms. Thus it is also reasonable to set
k ≤ m/3 in the proposed algorithms in order to achieve a better chance for the signal to
be recovered.

4) The number k can be also suggested by experiments including the phase transition of
algorithms which sheds light on certain relation between the factors (k,m, n) and the
recovery success of signals by given algorithms.
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Remark 2 Since x p−1, x p are two k-sparse vectors inRn and A ∈ R
m×n , the computations of

Ax p andβ(x p−x p−1) in (2.2) need atmostmk and2kmultiplication operations, respectively.
Thus S1 in HBROTPω requires at most mn + m + mk + 2k multiplication operations. As
pointed out in [58, Section 5.1], S2 and S3 in HBROTPω requires O(n3.5L + n log k) +
(mk2 + k3/3) flops, in which L is the length of the problem data encoding in binary. Since
k � m, the computational complexity of HBROTPω at each iteration is about O(n3.5L +
mn + n log k + mk2).

3 Analysis of HBOT and HBOTP

In this section, we establish the error bounds for HBOT and HBOTP under the RIP of order k
or k + 1. Taking into account the noise influence, the error bound provides the estimation of
the distance between the problem solution and the iterates generated by the algorithms. Thus
the error bound is an important measurement of the quality of iterates as the approximation to
the true solution of the linear inverse problem. In noiseless situations, the error bound implies
the global convergence of the algorithms under the RIP assumption. Let us first introduce
the following property, which is a combination of Lemmas 3.3 and 3.6 in [58].

Lemma 3 [58] Let z be a (2k)-sparse vector. Then ‖Az‖22 ≥ (1− 2δk − δk+s(k))‖z‖22 where

s(k) =
{
1, if k is an odd number,
0, if k is an even number.

(3.1)

Note that Lemma 3.4 in [58] was established for the sparsity level k being an even number.
We now establish the similar result even when k is odd.

Lemma 4 Let h, z ∈ R
n be two k-sparse vectors, and let ŵ ∈ Wk be any k-sparse binary

vector satisfied supp(h) ⊆ supp(ŵ), then

‖[(I − AT A)(h − z)] ◦ ŵ‖2 ≤ √
5δk+s(k)‖h − z‖2, (3.2)

where s(k) is given by (3.1).

Proof For given vectors h, z, ŵ satisfying the conditions of the lemma, from [58, Lemma
3.4], we get

‖[(I − AT A)(h − z)] ◦ ŵ‖2 ≤ √
5δk‖h − z‖2 (3.3)

for even number k. Therefore, we just need to show that (3.2) also holds when k is an odd
number.

Indeed, assume that k is an odd number. Taking a (k +1)-sparse binary vector w ∈ Wk+1

such that supp(ŵ) ⊆ supp(w), we obtain

‖[(I − AT A)(h − z)] ◦ ŵ‖2 =
∥∥∥∥
[
(I − AT A)(h − z)

]
supp(ŵ)

∥∥∥∥
2

≤
∥∥∥∥
[
(I − AT A)(h − z)

]
supp(w)

∥∥∥∥
2

= ‖[(I − AT A)(h − z)] ◦ w‖2. (3.4)

As h and z are two k-sparse vectors, they are also (k + 1)-sparse vectors. Since supp(h) ⊆
supp(ŵ) ⊆ supp(w), and since k + 1 is even (when k is odd), applying (3.3) to this case
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yields

‖[(I − AT A)(h − z)] ◦ w‖2 ≤ √
5δk+1‖h − z‖2. (3.5)

Combining (3.4) and (3.5), we obtain

‖[(I − AT A)(h − z)] ◦ ŵ‖2 ≤ √
5δk+1‖h − z‖2

for odd number k. We conclude that (3.2) holds for any positive integer k. ��
The main results for HBOT and HBOTP are summarized as follows.

Theorem 1 Let x ∈ R
n be a solution to the system y = Ax + ν where ν is a noise vector.

Assume that the RIC, δk+s(k), of A and the parameters α, β in HBOT and HBOTP satisfy
that δk+s(k) < γ ∗ and

0 ≤ β <
1 + 1/η

1 + √
5δk+s(k)

− 1,
1 + 2β − 1/η

1 − √
5δk+s(k)

< α <
1 + 1/η

1 + √
5δk+s(k)

, (3.6)

where γ ∗(≈ 0.2274) is the unique root of the equation 5γ 3+5γ 2+3γ −1 = 0 in the interval

(0, 1), s(k) is given by (3.1) and η :=
√

1+δk
1−2δk−δk+s(k)

. Then the sequence {x p} generated by
HBOT or HBOTP obeys

‖xS − x p‖2 ≤ C1θ
p−1 + C2‖ν′‖2, (3.7)

where S := Lk(x), ν′ := ν + AxS, and the quantities C1,C2 are defined as

C1 = ‖xS − x1‖2 + (θ − b)‖xS − x0‖2, C2 = 2 + (1 + δk)α

(1 − θ)
√
1 − 2δk − δk+s(k)

, (3.8)

and θ := (b +√
b2 + 4ηβ)/2 < 1 is ensured under the conditions (3.6) and the constant b

is given by

b := η
(
|1 + β − α| + √

5αδk+s(k)

)
. (3.9)

Proof From (2.2), we have

u p − xS = (1 − α + β)(x p − xS) + α(I − AT A)(x p − xS) − β(x p−1 − xS) + αAT ν′,(3.10)

where S = Lk(x) and ν′ = ν + AxS . Let ŵ ∈ Wk be a k-sparse binary vector such that
supp(xS) ⊆ supp(ŵ). Then xS = xS ◦ ŵ. Since (xS − u p) ◦ ŵ is a k-sparse vector and
y = AxS + ν′, we have

‖y − A(u p ◦ ŵ)‖2 =‖A(xS − u p ◦ ŵ) + ν′‖2
≤‖A[(xS − u p) ◦ ŵ]‖2 + ‖ν′‖2
≤√1 + δk‖(xS − u p) ◦ ŵ‖2 + ‖ν′‖2, (3.11)

where the last inequality is obtained by using (2.1). From (3.10), one has

‖(xS − u p) ◦ ŵ‖2
≤ |1 − α + β| · ‖(x p − xS) ◦ ŵ‖2 + α‖[(I − AT A)(x p − xS)] ◦ ŵ‖2

+ β‖(x p−1 − xS) ◦ ŵ‖2 + α‖(AT ν′) ◦ ŵ‖2. (3.12)
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Since xS, x p, ŵ are k-sparse vectors and supp(xS) ⊆ supp(ŵ), by using Lemmas 4 and 1
(ii), we obtain

‖[(I − AT A)(x p − xS)] ◦ ŵ‖2 ≤ √
5δk+s(k)‖x p − xS‖2 (3.13)

and

‖(AT ν′) ◦ ŵ‖2 =
∥∥∥(AT ν′)supp(ŵ)

∥∥∥
2

≤ √
1 + δk‖ν′‖2. (3.14)

Substituting (3.13) and (3.14) into (3.12) yields

‖(xS − u p) ◦ ŵ‖2 ≤ |1 − α + β| · ‖x p − xS‖2 + α
√
5δk+s(k)‖x p − xS‖2

+ β‖x p−1 − xS‖2 + α
√
1 + δk‖ν′‖2

= (|1 + β − α| + √
5αδk+s(k))‖x p − xS‖2 + β‖x p−1 − xS‖2

+ α
√
1 + δk‖ν′‖2.

It follows from (3.11) that

‖y − A(u p ◦ ŵ)‖2 ≤√1 + δk

(
|1 + β − α| + √

5αδk+s(k)

)
‖x p − xS‖2

+ β
√
1 + δk‖x p−1 − xS‖2 + [1 + (1 + δk)α]‖ν′‖2. (3.15)

Since x p+1 = u p ◦ w∗ in HBOT or x p+1 is the optimal solution of (2.4) in HBOTP, the
sequence {x p} generated by HBOT or HBOTP satisfies

‖y − Ax p+1‖2 ≤ ‖y − A(u p ◦ w∗)‖2 ≤ ‖y − A(u p ◦ w)‖2 (3.16)

for all w ∈ Wk, where the second inequality follows from (2.3). For ŵ ∈ Wk , it follows
from (3.16) that

‖y − Ax p+1‖2 ≤ ‖y − A(u p ◦ ŵ)‖2. (3.17)

As xS − x p+1 is a (2k)-sparse vector, by using Lemma 3, one has

‖y − Ax p+1‖2 =‖A(xS − x p+1) + ν′‖2
≥‖A(xS − x p+1)‖2 − ‖ν′‖2
≥√1 − 2δk − δk+s(k)‖xS − x p+1‖2 − ‖ν′‖2. (3.18)

Combining (3.15), (3.17) and (3.18) yields

‖x p+1 − xS‖2 ≤ η(|1 + β − α| + √
5αδk+s(k))‖x p − xS‖2 + ηβ‖x p−1 − xS‖2

+ 2 + (1 + δk)α√
1 − 2δk − δk+s(k)

‖ν′‖2

= b‖x p − xS‖2 + ηβ‖x p−1 − xS‖2 + (1 − θ)C2‖ν′‖2, (3.19)

where η, b, θ,C2 are given exactly as in Theorem 1. Since δk ≤ δk+s(k) < γ ∗, we have

η
√
5δk+s(k) = √

5δk+s(k)

√
1 + δk

1 − 2δk − δk+s(k)
<

√
5γ ∗

√
1 + γ ∗
1 − 3γ ∗ = 1,

where the last equality follows from the fact that γ ∗ is the root of 5γ 3 + 5γ 2 + 3γ = 1 in
(0, 1). It implies that 0 <

1+1/η
1+√

5δk+s(k)
− 1, which shows that the range of β in (3.6) is well
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defined. Furthermore, the first inequality in (3.6) implies that

1 + 2β − 1/η

1 − √
5δk+s(k)

< 1 + β <
1 + 1/η

1 + √
5δk+s(k)

,

which indicates that the range for α in (3.6) is also well defined. Combining (3.9) with (3.6),
we deduce that

b =η
(
|1 + β − α| + √

5αδk+s(k)

)

=
⎧⎨
⎩

η
[
1 + β − α(1 − √

5δk+s(k))
]
, if 1+2β−1/η

1−√
5δk+s(k)

< α ≤ 1 + β,

η
[
−1 − β + α(1 + √

5δk+s(k))
]
, if 1 + β < α <

1+1/η
1+√

5δk+s(k)
,

<1 − ηβ,

which means that the relation (3.19) obeys the conditions of Lemma 2. It follows from

Lemma 2 that (3.7) holds with θ = b+
√

b2+4ηβ
2 < 1 and C1,C2 are given by (3.8). ��

The error bound (3.7) indicates that the iterate x p generated by the algorithms can approxi-
mate xS, the significant components of the solution to the linear inverse problem. In particular,
we immediately obtain the following convergence result for the algorithms.

Corollary 1 Let x ∈ R
n be a k-sparse solution to the system y = Ax . Assume that the

RIC, δk+s(k), of A and the parameters α, β in HBOT and HBOTP satisfy the conditions of
Theorem 1. Then the sequence {x p} generated by HBOT or HBOTP obeys that ‖x − x p‖2 ≤
C1θ

p−1, where the constant C1 is defined in Theorem 1. Thus the sequence {x p} generated
by HBOT or HBOTP converges to x .

4 Analysis of HBROT! and HBROTP!

In this section, we establish the error bounds for HBROTω and HBROTPω. The analysis is
far from being trivial. We need a few useful technical results before we actually establish
the error bounds. We first recall a helpful lemma concerning the polytope Pk , which is the
special case of Lemma 4.2 with τ = k in [58].

Lemma 5 [58] Given an index setΛ ⊆ N and a vectorw ∈ Pk, decomposewΛ as the sumof
k-sparse vectors: wΛ = ∑q

j=1 wΛ j , where q := � |Λ|
k �, Λ = ⋃q

j=1 Λ j and Λ1 := Lk(wΛ),
Λ2 := Lk(wΛ\Λ1) and so on. Then

q∑
j=1

‖wΛ j ‖∞ < 2.

We now give an inequality concerning the norms ‖ · ‖2, ‖ · ‖1 and ‖ · ‖∞. This inequality
is a modification of Lemma 6.14 in [28], but tailored to the need of the later analysis in this
paper.

Lemma 6 Let h ∈ R
r \ {0} be a vector with r ≥ 2, and let ζ1 > ζ2 be two positive numbers

such that ‖h‖1 ≤ ζ1 and ‖h‖∞ ≤ ζ2. Then

‖h‖2 ≤
{

g(r), if r ≤ t0,
min{g(t0), g(t0 + 1)}, if r ≥ t0 + 1,

(4.1)
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where t0 := � 4ζ1
ζ2

� and

g( j) := 1√
j
ζ1 +

√
j

4
ζ2, j ∈ (0,+∞), (4.2)

is strictly decreasing in the interval (0, 4ζ1
ζ2

] and strictly increasing in the interval [ 4ζ1
ζ2

,+∞).

Proof Without loss of generality, we assume that h is a nonnegative vector. Sort the compo-
nents of h into descending order, and denote such ordered components by z1 ≥ z2 ≥ · · · ≥
zr ≥ 0 and z = (z1, . . . , zr )T . Thus, ‖z‖q = ‖h‖q for q ≥ 1. For a given positive integer s
and a1 ≥ a2 ≥ · · · ≥ as ≥ 0, from [28, Lemma 6.14], one has

√
a21 + · · · + a2s ≤ a1 + · · · + as√

s
+

√
s

4
(a1 − as). (4.3)

There are only two cases according to the relation between r and t0.
Case 1. r ≤ t0. By using (4.2) and (4.3), we have

‖z‖2 ≤ ‖z‖1√
r

+
√
r

4
(z1 − zr ) ≤ ‖z‖1√

r
+

√
r

4
‖z‖∞ ≤ 1√

r
ζ1 +

√
r

4
ζ2 = g(r). (4.4)

Case 2. r ≥ t0 + 1. Denote by t := argmin j {g( j) : j = t0, t0 + 1} and let r1, r2 be
nonnegative integers such that r = r1t + r2(0 ≤ r2 < t). Decompose z as the sum of
t-sparse vectors: z = ∑r1+1

j=1 zQ j , where Q j := {( j − 1)t + 1, . . . , j t} with j = 1, . . . , r1,
and Qr1+1 := {r1t + 1, . . . , r1t + r2}.

Firstly, we consider the case r2 > 0. With the aid of (4.3), we see that

‖zQ j ‖2 ≤ ‖zQ j ‖1√
t

+
√
t

4

(
z( j−1)t+1 − z jt

)
, j = 1, . . . , r1, (4.5)

and

‖zQr1+1‖2 ≤ ‖zQr1+1‖1√
t

+
√
t

4
zr1t+1, (4.6)

which is ensured under the conditions a1 = zr1t+1, . . . , ar2 = zr1t+r2 and ar2+1 = . . . =
at = 0. Merging (4.5) with (4.6), one has

‖z‖2 =
∥∥∥∥∥∥
r1+1∑
j=1

zQ j

∥∥∥∥∥∥
2

≤
r1+1∑
j=1

‖zQ j ‖2 ≤ 1√
t

r1+1∑
j=1

‖zQ j ‖1 +
√
t

4
μ

with

μ :=
r1∑
j=1

(
z( j−1)t+1 − z jt

)+ zr1t+1 = z1 −
r1∑
j=1

(
z jt − z jt+1

) ≤ z1,

where the inequality is resulted from z1 ≥ z2 ≥ · · · ≥ zr . It follows that

‖z‖2 ≤ 1√
t
‖z‖1 +

√
t

4
z1 ≤ 1√

t
ζ1 +

√
t

4
ζ2 = g(t), (4.7)

where the second inequality is ensured by ‖z‖1 = ‖h‖1 ≤ ζ1 and z1 = ‖h‖∞ ≤ ζ2.
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Secondly, we now consider the case r2 = 0, which means Qr1+1 = ∅ and z = ∑r1
j=1 zQ j .

Hence, by using (4.3), we obtain

‖z‖2 ≤
r1∑
j=1

‖zQ j ‖2 ≤ 1√
t

r1∑
j=1

‖zQ j ‖1 +
√
t

4

r1∑
j=1

(
z( j−1)t+1 − z jt

)
. (4.8)

For z1 ≥ z2 ≥ · · · ≥ zr ≥ 0, we have

r1∑
j=1

(
z( j−1)t+1 − z jt

) = z1 −
r1−1∑
j=1

(
z jt − z jt+1

)− zr1 ≤ z1 = ‖z‖∞. (4.9)

Merging (4.8) with (4.9) leads to

‖z‖2 ≤ 1√
t
‖z‖1 +

√
t

4
‖z‖∞ ≤ 1√

t
ζ1 +

√
t

4
ζ2 = g(t). (4.10)

Combining (4.4), (4.7), (4.10)with ‖z‖q = ‖h‖q(q ≥ 1), we obtain the relation (4.1) directly.
��

Now, we use an example to show that the upper bound of ‖h‖2 in Lemma 6 is tighter than
that of Lemma 6.14 in [28] in some situations.

Example 1 Let h = (1, ε1, . . . , ε14, ε0)T ∈ R
16,where ε j ≥ ε0 ( j = 1, . . . , 14),

∑14
j=1 ε j =

1 − ε0 and ε0 ∈ (0, 1/15]. Hence, ‖h‖1 = 2 and ‖h‖∞ = 1. Set ζ1 = 2 and ζ2 = 1. Then
t0 = 4ζ1

ζ2
= 8. The upper bound of ‖h‖2 can be given by ‖h‖2 ≤ 1.5 − ε0 in (4.3) and

‖h‖2 ≤ g(8) = √
2 in (4.1), respectively. Since 1.5 − ε0 >

√
2 for ε0 ∈ (0, 1/15], we see

that the upper bound of ‖h‖2 given by (4.1) is tighter than that of (4.3) if r > t0 + 1 and
ε0 = min1≤i≤r |hi | is small enough.

Taking h = (‖wΛ1‖∞, . . . , ‖wΛq ‖∞)T with q = � |Λ|
k �, by using Lemma 5, we have

‖h‖1 < 2 and ‖h‖∞ = ‖wΛ1‖∞ ≤ 1. Hence, by setting ζ1 = 2 and ζ2 = 1, we get t0 = 8
in Lemma 6. This results in the following corollary.

Corollary 2 Under the conditions of Lemma 5, one has
(∑q

j=1 ‖wΛ j ‖2∞
)1/2 ≤ ξq , where

ξq =

⎧
⎪⎨
⎪⎩

1, if q = 1,
2√
q +

√
q
4 , if 2 ≤ q < 8,√

2, if q ≥ 8,

(4.11)

which is strictly decreasing in the interval [2, 8] and max
q≥1

ξq = ξ2 = 5
4

√
2.

Using Lemmas 5 and 6, we can establish the next lemma.

Lemma 7 Let x ∈ R
n be a vector satisfying y = Ax + ν where ν is a noise vector. Let

S = Lk(x)and let V ⊆ N beanygiven index set such that S ⊆ V .At the iterate x p, the vectors
w( j), j = 1, · · · , ω, are generated by HBROTω or HBROTPω. For every i ∈ {1, . . . , ω},
we have

Θ i :=
∥∥∥A

[
(u p − xS) ◦ w

(i)
H

]
V

∥∥∥
2

≤√1 + δk

[(
ξq |1 − α + β| + 2αδ3k

)‖x p − xS‖2 + βξq‖x p−1 − xS‖2
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+ 2α
√
1 + δk‖ν′‖2

]
, (4.12)

where w
(i)
H is the Hadamard product of vectors w( j)( j = 1, · · · , i), i.e.,

w
(i)
H := w(1) ◦ w(2) ◦ · · · ◦ w(i), i = 1, . . . , ω, (4.13)

and ξq is given by (4.11) with q = � n−|V |
k �.

Proof Taking w = w(1) and Λ = V in Lemma 5 and Corollary 2, one has

q∑
j=1

‖(w(1))Λ j ‖∞ < 2,

√√√√
q∑
j=1

‖(w(1))Λ j ‖2∞ ≤ ξq , (4.14)

where q = � n−|V |
k � and the definition of Λ j , j = 1, . . . , q, can be found in Lemma 5.

Next, we derive the relation (4.12) for given i ∈ {1, . . . , ω}. Define the k-sparse vectors
z(l) := [(u p − xS) ◦ w

(i)
H ]Λl , l = 1, . . . , q, where u p and w

(i)
H are given by (2.2) and (4.13),

respectively. Since w( j) ∈ Pk( j = 1, . . . , ω), we have

‖z(l)‖2 ≤ ‖(w(i)
H )Λl‖∞ · ‖(u p − xS)Λl‖2 ≤ ‖(w(1))Λl‖∞ · ‖(u p − xS)Λl‖2, (4.15)

where the second inequality follows from (4.13) and 0 ≤ w( j) ≤ e for j = 1, . . . , ω. Since
z(l), l = 1, . . . , q, are k-sparse vectors, from the definition of Θ i in (4.12) and (4.15), we
obtain

Θ i =
∥∥∥∥∥A

q∑
l=1

z(l)
∥∥∥∥∥
2

≤
q∑

l=1

‖Az(l)‖2 ≤ √
1 + δk

q∑
l=1

‖z(l)‖2

≤ √
1 + δk

q∑
l=1

‖(w(1))Λl‖∞ · ‖(u p − xS)Λl‖2, (4.16)

where the second inequality is given by (2.1). Since |Λl | ≤ k and |supp(x p − xS)∪Λl | ≤ 3k
for l = 1, . . . , q, by using (3.10) and Lemma 1, we have

‖(u p − xS)Λl‖2 ≤|1 − α + β| · ‖(x p − xS)Λl‖2 + α‖[(I − AT A)(x p − xS)]Λl‖2
+ β‖(x p−1 − xS)Λl‖2 + α‖(AT ν′)Λl‖2

≤|1 − α + β| · ‖(x p − xS)Λl‖2 + αδ3k‖x p − xS‖2
+ β‖(x p−1 − xS)Λl‖2 + α

√
1 + δk‖ν′‖2. (4.17)

Substituting (4.17) into (4.16) yields

Θ i

√
1 + δk

≤|1 − α + β| ·
q∑

l=1

‖(w(1))Λl‖∞ · ‖(x p − xS)Λl‖2

+ αδ3k

q∑
l=1

‖(w(1))Λl‖∞ · ‖x p − xS‖2

+ β

q∑
l=1

‖(w(1))Λl‖∞ · ‖(x p−1 − xS)Λl‖2

+ α
√
1 + δk

q∑
l=1

‖(w(1))Λl‖∞ · ‖ν′‖2.
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It follows from Cauchy-Schwarz inequality and (4.14) that

Θ i

√
1 + δk

≤ |1 − α + β|
√√√√

q∑
l=1

‖(w(1))Λl‖2∞

√√√√
q∑

l=1

‖(x p − xS)Λl‖22 + 2αδ3k‖x p − xS‖2

+ β

√√√√
q∑

l=1

‖(w(1))Λl‖2∞

√√√√
q∑

l=1

‖(x p−1 − xS)Λl‖22 + 2α
√
1 + δk‖ν′‖2

≤ |1 − α + β|ξq‖x p − xS‖2 + 2αδ3k‖x p − xS‖2 + βξq‖x p−1 − xS‖2
+ 2α

√
1 + δk‖ν′‖2,

where the last inequality follows from the relation
∑q

j=1 ‖zΛl‖22 = ‖zV ‖22 ≤ ‖z‖22 for any

z ∈ R
n due to V = ⋃q

j=1 Λ j and Λ j
⋂

Λl = ∅ for j �= l. Thus (4.12) holds. ��

We now estimate the term ‖y − A(u p ◦ w
(ω)
H )‖2 by using Lemma 7.

Lemma 8 Let x ∈ R
n be a vector satisfying y = Ax + ν where ν is a noise vector. At the

iterate x p, the vectors u p andw( j)( j = 1, · · · , ω) are generated by HBROTω or HBROTPω.
Then

‖y − A(u p ◦ w
(ω)
H )‖2

≤ c1,q
√
1 + δk‖x p − xS‖2 +√

1 + δkβ
[
ξq(ω − 1) + 1

]‖x p−1 − xS‖2
+ [

α(2ω − 1)(1 + δk) + 1
]‖ν′‖2, (4.18)

wherew
(ω)
H is given by (4.13), S := Lk(x), q = � n−k

k �, ξq is given by (4.11) and c1,q is given
as

c1,q := (
ξq(ω − 1) + 1

)|1 − α + β| + α
(
2(ω − 1)δ3k + δ2k

)
. (4.19)

Proof Let ŵ ∈ Wk be a binary vector satisfying supp(xS) ⊆ supp(ŵ) and V = supp(ŵ).
From Lemma 4.3 in [58], we get

‖y − A[u p ◦ w
(ω)
H ]‖2 ≤ ‖y − A(u p ◦ ŵ)‖2 +

ω−1∑
i=1

∥∥∥A
[
(u p − xS) ◦ w

(i)
H ◦ (e − ŵ)

]∥∥∥
2
,

(4.20)

where w
(i)
H , i = 1, . . . , ω, are given by (4.13). As V = supp(ŵ) and |V | = k, it follows

from (4.12) that

∥∥∥A
[
(u p − xS) ◦ w

(i)
H ◦ (e − ŵ)

]∥∥∥
2

=
∥∥∥∥A

[
(u p − xS) ◦ w

(i)
H

]
supp(ŵ)

∥∥∥∥
2

≤ √
1 + δk

[
(ξq |1 − α + β| + 2αδ3k)‖x p − xS‖2 + βξq‖x p−1 − xS‖2

+ 2α
√
1 + δk‖ν′‖2

]
, (4.21)
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where q = � n−k
k � and i = 1, . . . , ω − 1. We now estimate the term ‖y − A(u p ◦ ŵ)‖2 in

(4.20). Because |supp(x p − xS) ∪ supp(ŵ)| ≤ 2k, by using (3.12) and Lemma 1, we obtain

‖(xS − u p) ◦ ŵ‖2
≤ |1 − α + β| · ‖x p − xS‖2 + α

∥∥∥∥
[
(I − AT A)(x p − xS)

]
supp(ŵ)

∥∥∥∥
2

+ β‖x p−1 − xS‖2 + α

∥∥∥(AT ν′)supp(ŵ)

∥∥∥
2

≤ (|1 − α + β| + αδ2k)‖x p − xS‖2 + β‖x p−1 − xS‖2 + α
√
1 + δk‖ν′‖2.

It follows from (3.11) that

‖y − A(u p ◦ ŵ)‖2 ≤ √
1 + δk

[(|1 − α + β| + αδ2k
)‖x p − xS‖2

+ β‖x p−1 − xS‖2 + α
√
1 + δk‖ν′‖2

]
+ ‖ν′‖2. (4.22)

Combining (4.21), (4.22) with (4.20) yields (4.18). ��
The following property of the hard thresholding operator Hk(·) is shown in [58, Lemma

4.1].

Lemma 9 [58] Let z, h ∈ R
n be two vectors and ‖h‖0 ≤ k. Then

‖h − Hk(z)‖2 ≤ ‖(z − h)S∪S∗‖2 + ‖(z − h)S∗\S‖2,
where S := supp(h) and S∗ := supp(Hk(z)).

Let us state a fundamental property of the orthogonal projection in the following lemma,
which can be found in [27, Eq.(3.21)] and [56, p.49], and was extended to the general case
in [60, Lemma 4.2].

Lemma 10 [27, 56, 60] Let x ∈ R
n be a vector satisfying y = Ax + ν where ν is a noise

vector. Let S∗ ⊆ N be an index set satisfying |S∗| ≤ k and

z∗ = arg min
z∈Rn

{‖y − Az‖22 : supp(z) ⊆ S∗}.

Then

‖z∗ − xS‖2 ≤ 1√
1 − (δ2k)2

‖(z∗ − xS)S∗‖2 +
√
1 + δk

1 − δ2k
‖ν′‖2,

where S := Lk(x) and ν′ := ν + AxS .

We now establish the error bounds for HBROTω and HBROTPω.

Theorem 2 Suppose that n > 3k and denote σ := � n−2k
k �. Let x ∈ R

n be a vector satisfying
y = Ax + ν where ν is a noise vector. Denote

tk :=
√
1 + δk√
1 − δ2k

, zk :=
√
1 − δ22k . (4.23)

(i) Assume that the (3k)-th order RIC, δ3k , of the matrix A and the nonnegative parameters
(α, β) satisfy δ3k < γ ∗(ω) and

β <
1 − d1

1 + d1 + d2
,

(d0 + d2 + 2)β + d0
d0 − d1 + 1

< α <
d0 + 2 − (d2 − d0)β

d0 + d1 + 1
, (4.24)
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where γ ∗(ω) is the unique root of the equation Gω(γ ) = 1 in the interval (0, 1), where

Gω(γ ) := (2ω + 1)γ

√
1 + γ

1 − γ
+ γ, (4.25)

and the constants d0, d1, d2 are given as
⎧⎨
⎩
d0 := tk(ωξσ + 1),
d1 := tk(2ωδ3k + δ2k) + δ3k,

d2 := tk[ξσ (ω − 1) + 1] 2ωδ3k+δ2k
2(ω−1)δ3k+δ2k

.

(4.26)

Then, the sequence {x p} produced by HBROTω obeys

‖x p − xS‖2 ≤ θ
p−1
1

[‖x1 − xS‖2 + (θ1 − b1)‖x0 − xS‖2
]+ b3

1 − θ1
‖ν′‖2 (4.27)

with θ1 := b1+
√
b21+4b2
2 . The fact θ1 < 1 is ensured under (4.24) and b1, b2, b3 are given

as

b1 :=tkcσ + (|1 + β − α| + αδ3k) , b2 := βtk[ξσ (ω − 1) + 1] cσ

c1,σ
+ β,

b3 :=α(2ω − 1)(1 + δk) + 2√
1 − δ2k

· 2δ3k
2(ω − 1)δ3k + δ2k

· cσ

cσ − c1,σ
+ α

√
1 + δk, (4.28)

where c1,σ and ξσ are given by (4.19) and (4.11), respectively, and

cσ := (ωξσ + 1)|1 − α + β| + α(2ωδ3k + δ2k). (4.29)

(ii) Suppose that the (3k)-th order RIC, δ3k , of the matrix A and the nonnegative parameters
(α, β) satisfy δ3k < γ �(ω) and

β <
zk − d1

1 + d1 + d2
,

(d0 + d2 + 2)β + d0 + 1 − zk
d0 − d1 + 1

< α <
d0 + 1 + zk − (d2 − d0)β

d0 + d1 + 1
,

(4.30)

where the constants d0, d1, d2 are given by (4.26) and γ �(ω) is the unique root of the
equation 1√

1−γ 2
Gω(γ ) = 1 in the interval (0, 1), where Gω(γ ) is given by (4.25). Then,

the sequence {x p} produced by HBROTPω obeys

‖x p − xS‖2 ≤ θ
p−1
2

[
‖x1 − xS‖2 + (θ2 − b1

zk
)‖x0 − xS‖2

]

+ 1

1 − θ2

(
b3
zk

+
√
1 + δk

1 − δ2k

)
‖ν′‖2 (4.31)

with θ2 := b1+
√
b21+4b2zk
2zk

. The fact θ2 < 1 is ensured under (4.30) and the constants
bi (i = 1, 2, 3) and zk are given by (4.28) and (4.23), respectively.

Proof Let x� = Hk(u p ◦ w
(ω)
H ) be generated by the Algorithms, where w

(ω)
H is given by

(4.13). By using Lemma 9, we have

‖xS − x�‖2 ≤ ‖(u p ◦ w
(ω)
H − xS)X∪S‖2 + ‖(u p ◦ w

(ω)
H − xS)X\S‖2, (4.32)
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where X = supp(x�). Using (3.10) and the triangle inequality, we have that

‖(u p ◦ w
(ω)
H − xS)X\S‖2 = ‖[(u p − xS) ◦ w

(ω)
H ]X\S‖2 ≤ ‖(u p − xS)X\S‖2

≤ |1 − α + β| · ∥∥(x p − xS)X\S
∥∥
2 + α‖[(I − AT A)(x p − xS)]X\S‖2

+ β‖(x p−1 − xS)X\S‖2 + α‖(AT ν′)X\S‖2,
where the first equality is ensured by (xS)X\S = 0 and the first inequality is due to (4.13)
and 0 ≤ w( j) ≤ e for j = 1, . . . , ω. Since |X\S| ≤ k and |supp(x p − xS) ∪ (X\S)| ≤ 3k,
by using Lemma 1, we see that

‖(u p ◦ w
(ω)
H − xS)X\S‖2 ≤ (|1 + β − α| + αδ3k)‖x p − xS‖2

+ β‖x p−1 − xS‖2 + α
√
1 + δk‖ν′‖2. (4.33)

Denote

Θ1 := ‖A(u p ◦ w
(ω)
H − xS)X∪S‖2, Θ2 := ‖A(u p ◦ w

(ω)
H − xS)X∪S‖2. (4.34)

As |X ∪ S| ≤ 2k, by using (2.1), we obtain

Θ1 ≥ √
1 − δ2k‖(u p ◦ w

(ω)
H − xS)X∪S‖2. (4.35)

For any given ζ ∈ (0, 1), we consider the following two cases associated with Θ1 and Θ2.
Case 1. Θ2 ≤ ζΘ1. Since y = AxS + ν′, by the triangle inequality and (4.34), we have

‖y − A(u p ◦ w
(ω)
H )‖2 = ‖A(u p ◦ w

(ω)
H − xS) − ν′‖2

= ‖A(u p ◦ w
(ω)
H − xS)X∪S + A(u p ◦ w

(ω)
H − xS)X∪S − ν′‖2

≥ Θ1 − Θ2 − ‖ν′‖2
≥ (1 − ζ )Θ1 − ‖ν′‖2. (4.36)

Merging (4.35), (4.36) with (4.18) yields

‖(u p ◦ w
(ω)
H − xS)X∪S‖2

≤ 1

(1 − ζ )
√
1 − δ2k

(‖y − A(u p ◦ w
(ω)
H )‖2 + ‖ν′‖2)

≤ tkc1,q1
1 − ζ

‖x p − xS‖2 + βtk
1 − ζ

[
ξq1(ω − 1) + 1

]‖x p−1 − xS‖2

+ α(2ω − 1)(1 + δk) + 2

(1 − ζ )
√
1 − δ2k

‖ν′‖2, (4.37)

where q1 = � n−k
k � = σ + 1 and tk, c1,q1 are given in (4.23) and (4.19), respectively.

Case 2. Θ2 > ζΘ1. From (4.34) and (4.35), we obtain

‖(u p ◦ w
(ω)
H − xS)X∪S‖2 ≤ 1

ζ
√
1 − δ2k

‖A[(u p − xS) ◦ w
(ω)
H ]X∪S‖2. (4.38)

Taking V = X ∪ S and i = ω in (4.12), one has

‖A[(u p − xS) ◦ w
(ω)
H ]X∪S‖2

≤ √
1 + δk

[
c2,q2‖x p − xS‖2 + βξq2‖x p−1 − xS‖2 + 2α

√
1 + δk‖ν′‖2

]
(4.39)
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with q2 = � n−|X∪S|
k � ≥ σ which is due to |X ∪ S| ≤ 2k, and c2,q2 is defined as

c2,q2 := ξq2 |1 − α + β| + 2αδ3k . (4.40)

Substituting (4.39) into (4.38), we get

‖(u p ◦ w
(ω)
H − xS)X∪S‖2 ≤ tk

ζ
[c2,q2‖x p − xS‖2 + βξq2‖x p−1 − xS‖2

+ 2α
√
1 + δk‖ν′‖2]. (4.41)

From (4.11), we see that ξq is decreasing in [2, n]. For q1 = σ + 1 and q2 ≥ σ ≥ 2, we
have ξq1 , ξq2 ≤ ξσ . It follows from (4.19) and (4.40) that c1,q1 ≤ c1,σ and c2,q2 ≤ c2,σ .
Combining (4.37) and (4.41) leads to

‖(u p ◦ w
(ω)
H − xS)X∪S‖2

≤ tk max

{
c1,σ
1 − ζ

,
c2,σ
ζ

}
‖x p − xS‖2

+ βtk max

{
ξσ (ω − 1) + 1

1 − ζ
,
ξσ

ζ

}
‖x p−1 − xS‖2

+ 1√
1 − δ2k

max

{
α(2ω − 1)(1 + δk) + 2

1 − ζ
,
2α(1 + δk)

ζ

}
‖ν′‖2 (4.42)

for any ζ ∈ (0, 1).
Next, we select a suitable parameter ζ ∈ (0, 1) such that the right hand of (4.42) is as

small as possible. For δ2k ≤ δ3k and ξσ < 2 in (4.11), we have

c2,σ
c1,σ

= ξσ |1 − α + β| + 2αδ3k

[ξσ (ω − 1) + 1]|1 − α + β| + α[2(ω − 1)δ3k + δ2k] ≤ 2δ3k
2(ω − 1)δ3k + δ2k

.

(4.43)

It is easy to check that

min
ζ∈(0,1)

max

{
c1,σ
1 − ζ

,
c2,σ
ζ

}
= c1,σ + c2,σ = cσ , (4.44)

where cσ is given by (4.29) and its minimum attains at

ζ ∗ = c2,σ
c1,σ + c2,σ

= ξσ |1 − α + β| + 2αδ3k

(ωξσ + 1
)|1 − α + β| + α(2ωδ3k + δ2k)

. (4.45)

That is,

max

{
c1,σ

1 − ζ ∗ ,
c2,σ
ζ ∗

}
= cσ . (4.46)

Moreover, noting that ξσ < 2 and δ2k ≤ δ3k , we have ζ ∗ ≥ ξσ

ωξσ +1 . In particular, by taking
ζ = ζ ∗ in (4.42), we deduce that

max

{
ξσ (ω − 1) + 1

1 − ζ ∗ ,
ξσ

ζ ∗

}
= ξσ (ω − 1) + 1

1 − ζ ∗ = ξσ (ω − 1) + 1

c1,σ
cσ ,

and

max

{
α(2ω − 1)(1 + δk) + 2

1 − ζ ∗ ,
2α(1 + δk)

ζ ∗

}

123



   93 Page 20 of 30 Journal of Scientific Computing            (2023) 96:93 

= 1

ζ ∗ max

{
[α(2ω − 1)(1 + δk) + 2] ζ ∗

1 − ζ ∗ , 2α(1 + δk)

}

= cσ

c2,σ
max

{
[α(2ω − 1)(1 + δk) + 2]c2,σ

c1,σ
, 2α(1 + δk)

}

≤ cσ

c2,σ
max

{
[α(2ω − 1)(1 + δk) + 2] 2δ3k

2(ω − 1)δ3k + δ2k
, 2α(1 + δk)

}

=
[
α(2ω − 1)(1 + δk) + 2

] 2δ3k
2(ω − 1)δ3k + δ2k

· cσ

c2,σ
, (4.47)

where the second equality is given by (4.45), the inequality above follows from (4.43), and
the last equality holds owing to δ2k ≤ δ3k . Merging (4.42) with (4.46)-(4.47), we obtain

‖(u p ◦ w
(ω)
H − xS)X∪S‖2

≤ tkcσ ‖x p − xS‖2 + βtk
ξσ (ω − 1) + 1

c1,σ
cσ ‖x p−1 − xS‖2

+ α(2ω − 1)(1 + δk) + 2√
1 − δ2k

· 2δ3k
2(ω − 1)δ3k + δ2k

· cσ

c2,σ
‖ν′‖2. (4.48)

Combining (4.33), (4.48) with (4.32), we have

‖xS − x�‖2 ≤ b1‖x p − xS‖2 + b2‖x p−1 − xS‖2 + b3‖ν′‖2, (4.49)

where the constants b1, b2, b3 are given by (4.28).
Next, we estimate ‖x p+1 − xS‖2 for HBROTω and HBROTPω based on the relation

(4.49).
(i) Since x p+1 = x� in HBROTω, (4.49) becomes

‖x p+1 − xS‖2 ≤ b1‖x p − xS‖2 + b2‖x p−1 − xS‖2 + b3‖ν′‖2. (4.50)

Now, we consider the conditions of Lemma 2. Merging (4.43) with (4.44) produces

cσ

c1,σ
≤ 2ωδ3k + δ2k

2(ω − 1)δ3k + δ2k
.

It follows from (4.28) and (4.29) that

b1 + b2 ≤ tkcσ + (|1 + β − α| + αδ3k)

+
{
tk

2ωδ3k + δ2k

2(ω − 1)δ3k + δ2k
[ξσ (ω − 1) + 1] + 1

}
β = F(α, β), (4.51)

where

F(α, β) :=(d0 + 1)|1 − α + β| + d1α + (d2 + 1)β,

=
{−(d0 − d1 + 1)α + (d0 + d2 + 2)β + d0 + 1, if α ≤ 1 + β,

(d0 + d1 + 1)α + (d2 − d0)β − (d0 + 1), if α > 1 + β,
(4.52)

with the constants d0, d1, d2 are given by (4.26).
Based on the fact δk ≤ δ2k ≤ δ3k < γ ∗(ω) and the function Gω(γ ) in (4.25) is strictly

increasing in the interval (0, 1), by using (4.26), we have

d1 ≤ [(2ω + 1)tk + 1]δ3k ≤ Gω(δ3k) < Gω(γ ∗(ω)) = 1, (4.53)

123



Journal of Scientific Computing            (2023) 96:93 Page 21 of 30    93 

which shows that the range of β in (4.24) is well defined. From the first inequality in (4.24),
we see that

(d0 + d2 + 2)β + d0
d0 − d1 + 1

< 1 + β <
d0 + 2 − (d2 − d0)β

d0 + d1 + 1
, (4.54)

which implies that the range of α in (4.24) is also well defined. Merging (4.52)-(4.54) with
the second inequality in (4.24), we see that if (d0+d2+2)β+d0

d0−d1+1 < α ≤ 1 + β, then

F(α, β) < −(d0 − d1 + 1)
(d0 + d2 + 2)β + d0

d0 − d1 + 1
+ (d0 + d2 + 2)β + d0 + 1 = 1,

and if 1 + β < α <
d0+2−(d2−d0)β

d0+d1+1 , then

F(α, β) < (d0 + d1 + 1)
d0 + 2 − (d2 − d0)β

d0 + d1 + 1
+ (d2 − d0)β − (d0 + 1) = 1.

It follows from (4.51) that b1 + b2 < 1. Hence, applying Lemma 2 to the relation (4.50), we

conclude that (4.27) holds with θ1 = b1+
√
b21+4b2
2 < 1.

(ii) Since x p+1 is givenby (2.6) and S p+1 = supp(x�) inHBROTPω, by setting S∗ = S p+1

and z∗ = x p+1 in Lemma 10, we have

‖x p+1 − xS‖2 ≤ 1

zk

∥∥∥(x� − xS)S p+1

∥∥∥
2
+

√
1 + δk

1 − δ2k
‖ν′‖2

≤ 1

zk
‖x� − xS‖2 +

√
1 + δk

1 − δ2k
‖ν′‖2, (4.55)

where zk is given in (4.23) and the first inequality follows from the fact (x p+1)
S p+1 =

(x�)
S p+1 = 0. Combining (4.55) with (4.49), we have

‖x p+1 − xS‖2 ≤ b1
zk

‖x p − xS‖2 + b2
zk

‖x p−1 − xS‖2 +
(
b3
zk

+
√
1 + δk

1 − δ2k

)
‖ν′‖2. (4.56)

Similar to the analysis in Part (i), we need to show that b1
zk

+ b2
zk

< 1.

From the conditions of Theorem 2(ii), we have δ2k ≤ δ3k < γ �(ω). Since the function
Gω(γ ) in (4.25) is strictly increasing in (0, 1), one has

d1 ≤ Gω(δ3k) < Gω(γ �(ω)) =
√
1 − (γ �(ω))2 <

√
1 − (δ2k)2 = zk,

where the first inequality is given by (4.53), the first equality follows from the fact that γ �(ω)

is the root of 1√
1−γ 2

Gω(γ ) = 1 in (0, 1) and the last equality is given by (4.23). It follows

that the range of β in (4.30) is well defined. From the first inequality in (4.30), we derive

(d0 + d2 + 2)β + d0 + 1 − zk
d0 − d1 + 1

< 1 + β <
d0 + 1 + zk − (d2 − d0)β

d0 + d1 + 1
, (4.57)

123



   93 Page 22 of 30 Journal of Scientific Computing            (2023) 96:93 

which means that the range of α in (4.30) is well defined. Combining (4.52), (4.57) with the
second inequality in (4.30) leads to

F(α, β) <

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(d0 − d1 + 1) (d0+d2+2)β+d0+1−zk
d0−d1+1 + (d0 + d2 + 2)β + d0 + 1,

if (d0+d2+2)β+d0+1−zk
d0−d1+1 < α ≤ 1 + β,

(d0 + d1 + 1) d0+1+zk−(d2−d0)β
d0+d1+1 + (d2 − d0)β − (d0 + 1),

if 1 + β < α <
d0+1+zk−(d2−d0)β

d0+d1+1 ,

=zk .

It follows from (4.51) that b1
zk

+ b2
zk

< 1. Therefore, by Lemma 2, it follows from (4.56) that

(4.31) holds with θ2 = b1+
√
b21+4b2zk
2zk

< 1. ��
Remark 3 (i) When ν = 0 and x is a k-sparse vector, from (4.27) and (4.31), we observe

that the sequence {x p} generated by HBROTω or HBROTPω converges to x .
(ii) The condition n > 3k in Theorem2 can be removed. If so, the constant ξσ will be replaced

by max
q≥1

ξq = 5
4

√
2 (see Corollary 2). In addition, if n > 9k, then σ = � n−2k

k � ≥ 8. In

this case, we see from (4.11) that ξσ in Theorem 2 can be replaced by min
q≥2

ξq = √
2.

(iii) When ω = 1, HBROTω and HBROTPω reduce to HBROT and HBROTP, respectively.
In this case, the RIP bounds in Theorem 2 are reduced to δ3k < γ ∗(1) ≈ 0.2118 for
HBROT and δ3k < γ �(1) ≈ 0.2079 for HBROTP.

(iv) It is not convenient to calculate the RIC of the matrix A and (4.30) is just a sufficient
condition for the theoretical performance of HBROTPω. In practical implementation, the
parameters (α, β) in HBROTP may be set as 0 ≤ β < 1/4 and α ≥ 1+ β for simplicity
to roughly meet the conditions (4.30).

5 Numerical Experiments

Sparse signal and image recovery through measurements y = Ax + ν, where x denotes the
signal/image to recover, is a typical linear inverse problem. In this section, we provide some
experiment results for the proposed HBROTP algorithm and compare its performance with
several existing methods. The experiments in Sects. 5.1 and 5.2 are performed on a server
with the processor Intel(R)Xeon(R) CPUE5-2680 v3@2.50GHz and 256GBmemory, while
others are performed on a PC with the processor Intel(R) Core(TM) i7-10700 CPU @ 2.90
GHz and 16 GB memory. All involved convex optimization problems are solved by CVX
[30] with solver ‘Mosek’ [2]. The comparison of six algorithms including HBROTP, ROTP2,
PGROTP, �1-min, OMP and PLB is mainly made via the phase transitions based on synthetic
data together with the reconstruction, deblurring and denoising of a few real images.

5.1 Phase Transition

The first experiment is carried out to compare the performances of the algorithms except
PLB through the phase transition curve (PTC) [5, 6] and average recovery time. All sparse
vectors x∗ ∈ R

n and matrices A ∈ R
m×n are randomly generated, and the position of

nonzero elements of x∗ follows the uniform distribution. In addition, all columns of A are
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Fig. 1 The 50% success rate phase transition curves for algorithms

normalized and the entries of A and the nonzeros of x∗ are independent and identically
distributed randomvariables followingN (0, 1). In this experiment,we consider both accurate
measurements y = Ax∗ and inaccurate measurements y = Ax∗ + εh with fixed n = 1000,
where ε = 5 × 10−3 is the noise level and h ∈ R

m is a normalized standard Gaussian
noise. We let HBROTP start from x1 = x0 = 0 with fixed parameters α = 5 and β = 0.2,
while other algorithms start from x0 = 0. The maximum number of iterations of HBROTP,
ROTP2 and PGROTP is set as 50, while OMP is performed exactly k iterations and �1-min
is performed by the solver ‘Mosek’ directly. Given the random data (A, x∗) or (A, x∗, h),

the recovery is counted as ‘success’ when the criterion

‖x p − x∗‖2/‖x∗‖2 ≤ 10−3

is satisfied, in which x p is the solution generated by algorithms.
Denote by κ = m/n and ρ = k/m, where κ is often called the sampling rate or the

compression ratio. In the (κ, ρ)-space, the region below the PTC is called the ‘success’
recovery region, where the solution of the SLI problem can be exactly or approximately
recovered, while the region above the PTC corresponds to the ‘failure’ region. Thus if the
region below the PTC is wider, the performance of an algorithm would be better. We now
briefly describe the mechanism for plotting the PTC which is taken as the classical 50%
logistic regression curve, and more detailed information can be found in [5, 6]. To generate
the PTCs, 13 groups ofm = �κ ·n� are considered, where the sampling rate κ is ranged from
0.1 to 0.7with stepsize 0.05. For anygivenm, by using the bisectionmethod, the approximated
recovery phase transition region [kmin, kmax] is produced for each algorithm, in which the
success rate of recovery is at least 90% as k < kmin and at most 10% as k > kmax. The
interval [kmin, kmax] will be equally divided into min{kmax − kmin, 50} parts, and 10 problem
instances are tested for each k to produce the recovery success rate for given algorithm. Thus
the PTCs can be obtained from the logistic regression model in [5, 6] directly.

The PTCs for the experimented algorithms are shown in Fig. 1 (a) and (b), which cor-
respond to the accurate measurements and inaccurate measurements with the noise level
ε = 5 × 10−3, respectively. The results indicate that HBROTP has the highest PTC as
κ ≤ 0.5, in which case the recovery capability of HBROTP is superior to other algorithms
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Fig. 2 The ratios of average CPU time of the algorithms

in this experiment. However, the PTCs indicate that ROTP2, PGROTP and OMP may per-
form relatively better than HBROTP with a larger κ . The comparison in Fig. 1(a) and (b)
demonstrates that all algorithms are robust for signal recovery when the measurements are
slightly inaccurate except �1-min. The comparison indicates that the overall performance of
HBROTP is very comparable to those existing methods in this experiment.

In the intersection of the recovery regions of multiple algorithms, we compare the average
CPU time for signal recovery via these algorithms. Specifically, for each given κ , we test 10
problem instances for each algorithm with the mesh (κ, ρ), wherein ρ is ranged from 0.02
to 1 with stepsize 0.02 until the success rate of recovery is less than 90%. The ratios of the
average computational time of ROTP2, PGROTP, �1-min and OMP against that of HBROTP
are displayed in Fig. 2(a)-(d), respectively. Figure 2 (a) and (b) show that HBROTP is at least
1.6 times faster than ROTP2 in most areas and slower than PGROTP except in the region
[0.1, 0.2]× [0.02, 0.1]. On the other hand, from Fig. 2 (a)-(d), we observe that the ROT-type
algorithms including HBROTP, ROTP2 and PGROTP take relatively more time to solve the
problems than �1-min and OMP, due to solving quadratic convex optimization problems.
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Table 1 Comparison of PSNR
(dB) for algorithms with different
sampling rates

κ HBROTP ROTP2 PGROTP �1-min OMP

0.3 32.60 32.34 33.12 33.63 31.37

Lena 0.4 34.37 32.49 31.75 35.10 32.95

0.5 35.63 33.11 31.93 37.04 34.34

0.3 31.31 32.33 33.27 33.03 30.17

Peppers 0.4 33.10 31.78 31.60 34.08 31.66

0.5 34.23 32.04 31.10 35.90 33.38

0.3 28.70 31.35 32.33 29.90 28.35

Baboon 0.4 29.12 30.06 30.00 30.05 28.53

0.5 29.37 30.06 30.07 30.20 28.78

5.2 Image Reconstruction

In this section, we compare the performances of several algorithms on the reconstruction of
several images (Lena, Peppers and Baboon) of size 512× 512. Only accurate measurements
are used in the experiment, and the measurement matrices are m × n normalized standard
Gaussian matrices with n = 512 and m = �κ · n�, where κ is the sampling rate. The discrete
wavelet transform with the ‘sym8’ wavelet is used to establish the sparse representation of
the images. The input sparsity level is set as k = �n/10� for HBROTP, ROTP2 and PGROTP,
and the parameters of HBROTP are set as α = 5 and β = 0.2. The peak signal-to-noise ratio
(PSNR) is used to compare the reconstruction quality of images, which is defined by

PSN R := 10 · log10(V 2/MSE),

where MSE denotes the mean-squared error between the reconstructed and original image,
and V represents the maximum fluctuation in the original image data type (V = 255 is used
in our experiments). Clearly, the larger the value of PSNR, the higher the reconstruction
quality.

The results in terms of PSNR with sampling rates κ = 0.3, 0.4, 0.5 are summarized
in Table 1 , from which we see that HBROTP is always superior to OMP and inferior to
�1-min in reconstruction quality. For ROTP-type algorithms with κ = 0.4, 0.5, the PSNR
values of HBROTP exceed that of ROTP2, PGROTP at least 1.88 dB for Lena and 1.32 dB
for Peppers, respectively. In other cases, ROTP2 and PGROTP obtained better results than
HBROTP in reconstruction quality. In particular, the performances of ROTP2 and PGROTP
are always equivalent or superior to �1-min for Baboon. In the meantime, the comparison of
visual quality for the reconstructed images by HBROTP with κ = 0.3, 0.4, 0.5 is displayed
in Fig. 3. It can be seen that the reconstruction quality has been significantly improved for
three images as the sampling rate κ is ranged from 0.3 to 0.5, and the best visual results have
been achieved around κ = 0.5.

5.3 Image Deblurring and Denoising

In this section, we compare the performances of HBROTP and PLB on image deblurring
and denoising. In our experiments, several images including Boats, Cameraman, Clock,
Goldhill and Shepp-Logan of size 128× 128 are expressed as vectors in Rn with n = 16384
through concatenating their columns. For a given image z, the corresponding blurred noisy
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Fig. 3 Performance of HBROTP for three images with different sampling rates

image y ∈ R
n is obtained by (1.1), in which Φ ∈ R

n×n is the blurring matrix generated by
a Gaussian kernel fspecial(‘Gaussian’,11,0.6) in Matlab with periodic boundary condition
(see Chapter 4 in [29]), and ν is a Gaussian white noise vector with mean 0 and standard
deviation σ̂ . The sparse representation of z is expressed as z = Ψ x , where Ψ is taken as
the synthesis operator generated by the linear B-splines [1, 11], denoted Ψ1, or the discrete
wavelet matrix generated by the ‘sym8’ wavelet, denoted Ψ2. Thus the image deblurring and
denoising can be achieved by solving the corresponding SLI problem (1.2).

For HBROTP, the discrete wavelet transform, i.e., Ψ = Ψ2 is used to achieve the sparse
representation of the image, and the parameters in this algorithm are set as k = �0.4n�, α = 1
and β = 0.8. For PLB, we use PLBi to represent PLB with Ψ = Ψi for i = 1, 2, and the
parameters (μ, d, δ) are given as follows: μ = 0.05 is determined experimentally in terms
of PSNR; the dimension of Krylov subspace is set as d = 11 according to the suggestion in
[1]; δ is the same as that of [11]. The stopping criterion of the algorithm is given by

‖x p+1 − x p‖2/‖x p+1‖2 ≤ 10−4.

The results in terms of CPU time and PSNR for HBROTP and PLB on image deblurring
and denoising with two different standard deviations σ̂ = 2, 4 are given in Table 2. In the
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Table 2 Comparison of PSNR (dB) and CPU time (in seconds) of HBROTP and PLB on image deblurring
and denoising with different standard deviation σ̂

Standard Images PSNR(dB) CPU time(seconds)
deviation PLB1 PLB2 HBROTP PLB1 PLB2 HBROTP

σ̂ = 2 Barbara 35.34 35.34 37.75 0.80 4.31 2291

Boats 35.53 35.52 35.34 0.83 3.30 2049

Cameraman 35.58 35.57 37.26 0.83 2.80 1383

Clock 35.66 35.65 38.12 0.59 2.13 1305

Goldhill 35.34 35.33 35.05 0.70 2.81 2319

Shepp-Logan 35.54 35.51 38.72 0.86 3.28 1764

σ̂ = 4 Barbara 30.74 30.74 33.86 0.94 4.03 2071

Boats 30.80 30.80 33.06 0.38 3.11 2411

Cameraman 30.79 30.79 33.53 0.78 4.14 1370

Clock 30.90 30.90 33.44 0.53 3.28 1737

Goldhill 30.76 30.75 33.02 0.80 3.95 2444

Shepp-Logan 30.93 30.92 33.70 0.61 4.66 1381

case σ̂ = 2, the PSNR values of HBROTP exceed that of PLB1 and PLB2 at least 1.6 dB
for all images except Boats and Goldhill. As the noise intensity increases, the differences of
PSNR values between HBROTP and PLBi (i = 1, 2) are enlarged to 2.2 dB for all images as
σ̂ = 4. This experiment shows that HBROTP can be stronger than PLB on image deblurring
and denoising, and HBROTP is more stable than PLB in noisy situations. However, solving
quadratic subproblem (2.5) causes the HBROTP method to consume more time than PLB1

andPLB2.Moreover, PLB1 is faster than PLB2 since the synthesis operatorΨ1 ismore sparser
than the discrete wavelet matrix Ψ2. Finally, the deblurring/denoising effects of HBROTP
and PLB1 on Cameraman and Shepp-Logan with σ̂ = 2 are shown in Fig. 4, from which it
can be observed that both HBROTP and PLB1 can successfully recover the two images in
high quality.

6 Conclusions

The new algorithms that combine the optimal k-thresholding and heavy-ball technique are
proposed in this paper. Such algorithms can be seen as the acceleration versions of the optimal
k-thresholding methods. The solution error bounds and convergence of the proposed algo-
rithms have been shown mainly under the RIP of the matrices. The numerical performance
of the proposed HBROTP algorithm has been evaluated through phase transition, average
runtime and image processing. The experiment results indicate that HBROTP is a robust
signal recovery method, especially when the sampling rate is relatively low (e.g., κ ≤ 0.5),
and it is generally faster than the standard ROTP method thank to the heavy-ball acceleration
technique.
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Fig. 4 Performance of PLB1 and HBROTP on image deblurring and denoising with σ̂ = 2
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