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In this paper, we propose a modified version of the hard thresholding pursuit algorithm, called modified hard thresholding pursuit
(MHTP), using a convex combination of the current and previous points. The convergence analysis, finite termination properties,
and stability of the MHTP are established under the restricted isometry property of the measurement matrix. Simulations are
performed in noiseless and noisy environments using synthetic data, in which the successful frequencies, average runtime, and phase
transition of theMHTP are considered. Standard test images are also used to test the reconstruction capability of theMHTP in terms
of the peak signal-to-noise ratio. Numerical results indicate that theMHTP is competitive with several mainstream thresholding and
greedy algorithms, such as hard thresholding pursuit, compressive sampling matching pursuit, subspace pursuit, generalized
orthogonal matching pursuit, and Newton-step-based hard thresholding pursuit, in terms of recovery capability and runtime.

1. Introduction

Compressed sensing has been applied in many industrial
fields, such as image processing [1, 2], wireless channel esti-
mation [3], group testing [4], and sparse signal recovery
[5–7]. One of the key components in compressed sensing
is the reconstruction of a signal using measurements smaller
than the signal length. The underlying assumption used to
achieve this is that the signal is required to be sparse. The
corresponding mathematical model can be expressed as the
following sparse optimization problem:

min
x

1
2

y − Axk k 2
2 : xk k 0 ≤ s

� �
; ð1Þ

where ∥x∥0 represents the total number of nonzero entries of
x 2 Rn, s is the sparsity level, A 2 Rm×n is the measurement
matrix with m≪ n, and y 2 Rm is the measurement vector.

Many different types of algorithms exist to solve the afore-
mentioned sparse optimization problem. The algorithms are
divided into three categories: optimization [8–12], greedy
[13–17], and thresholding [18–23]. In principle, which

algorithm should be selected depended on the actual situa-
tion. For example, the runtime is one of the criteria for algo-
rithms. Basic pursuit is one of the optimization methods, and
its runtime depends on the choice of algorithm used for the
minimization. If sparsity s is much smaller than the signal
length n, the greedy Orthogonal Matching Pursuit (OMP) is
extremely fast. A major advantage of hard thresholding algo-
rithms is that they are almost not affected by the level of
sparsity. In addition, the theoretical analysis tools for these
algorithms maybe different as well; see [24] for more discus-
sion. In this study, we focused on a popular thresholding
method, the hard thresholding pursuit (HTP) algorithm
[21–23]. HTP is a modified version of the iterative hard
thresholding (IHT) algorithm that adds an orthogonal pro-
jection/debiasing process. IHT [18] is a combination of the
gradient descent direction and hard-thresholding operator.
Although the gradient descent direction is used, the value of
the objective function may not decrease because of the appli-
cation of the hard-thresholding operator, which guarantees
the sparsity of signals without simultaneously considering the
reduction of the objective function value. This drawback is
overcome using a new thresholding operator called Optimal
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s-Thresholding, which selects s components that make the
objective function reach the minimum [25, 26]. However,
this modification causes a significant increase in runtime
because the subproblem is not easy to solve. Recently, using
a binary regularization and linearization technique, Zhao and
Luo [27] proposed Natural Thresholding algorithm to reduce
the computational cost. In addition, Liu and Barber intro-
duced a new operator called the Reciprocal Thresholding
[28], which lies between hard and soft thresholding. As men-
tioned earlier, an advantage of the IHT is that its runtime is
almost uninfluenced by the sparsity level. Along with its sim-
ple structure, this property makes IHT considerably attrac-
tive. Moreover, orthogonal projection aims to find a vector
that best fits the measurements in the corresponding sub-
space; therefore, its combination with IHT will alleviate the
instability of IHT and lead to the HTP algorithm. Additional
information on hard thresholding algorithms and their appli-
cations can be found in [5, 29–35].

The main contributions of this study are given as follows:

(1) It should be noted that many algorithms for solving
compressed sensing only use the gradient informa-
tion of the current point xp, such as IHT [18], HTP
[22], compressive sampling matching pursuit
(CoSaMP) [15], and subspace pursuit (SP) [13]. In
the design of an algorithm, it is possible to improve
the efficiency of the algorithm utilizing more infor-
mation provided by previous iteration points. Con-
sidering this motivation, we used the information of
the current point xp and the previous point xp−1 to
improve HTP performance. Notably, compressed
sensing has a combinational structure; hence, it
does not strictly belong to the field of continuous
optimization. This motivated us to study the convex
combination rather than the (extra) momentum
technique because the hard-thresholding operator
would break down the advantage imposed on the
(extra) momentum technique shown in standard
optimization problems. In other words, we present
a novel idea of using a convex combination of xp and
xp−1 to generate an intermediate point up and then
perform the gradient descent direction at up (not xp).
Based on this idea and using orthogonal projection,
we propose a new algorithm called the modified hard
thresholding pursuit (MHTP) algorithm.

(2) To guarantee the convergence of our algorithm from
a theoretical perspective, we discuss the Restricted
Isometry Property (RIP) of measurement matrix A.
More precisely, if the Restricted Isometry Constant
(RIC), δ3s, of the measurement matrix A satisfies

δ3s<
1ffiffiffi
3

p ; ð2Þ

the iterative sequence generated by the MHTP con-
verges. This bound is the same as that for HTP [22];
indeed, the best RIP-based bound for HTP is

δ3s<1=
ffiffiffi
3

p
≈ 0:577 [22] at present. The algorithm pro-

posed in this paper includesHTP as a special case; hence,
the RIP-based bound cannot be larger than 1=

ffiffiffi
3

p
. We

establish the convergence analysis, finite termination,
and stability of theMHTPwithout decreasing this upper
bound.

(3) To demonstrate the effectiveness of the MHTP for
sparse signal recovery, numerical experiments are
conducted by comparing it with several mainstream
algorithms such as HTP, Newton-step-based hard
thresholding pursuit (NSHTP) [30], generalized orthog-
onal matching pursuit (gOMP) [36], CoSaMP, and SP
from both synthetic data and real images. For synthetic
data, simulations are conducted in noiseless and noisy
environments, wherein the successful frequency, average
runtime, and phase transition of algorithms are consid-
ered. The numerical results indicate that the MHTP
outperforms the other algorithms in terms of the recov-
ery capability of sparse signals and consumes less time
than NSHTP, CoSaMP, SP, and gOMP. In real-world
experiments, the reconstruction capability of the algo-
rithms using several standard test images is compared
in terms of the peak signal-to-noise ratio (PSNR) and
total runtime. Simulations show that the MHTP is
competitive with other algorithms in terms of image
reconstruction quality and runtime.

The notations frequently used in this study are given as
follows. For a given index set S ⊆ 1;f 2;…; ng, jSj denotes the
cardinality of S and S̄ :¼ 1;f 2…; ngnS denotes the comple-
ment of S. For a fixed vector x 2 Rn, xS is obtained by retain-
ing the elements of x indexed in S and zeroing out the rest of
elements. The notationLs xð Þ is an index set whose elements
correspond to s-largest absolute entries of x, and Hs xð Þ
represents the hard thresholding of x, that is, Hs xð Þ¼
xLs xð Þ. Let supp xð Þ be the support of x, that is, supp xð Þ :¼
i j xi ≠ 0f g. For a given real number a, dae denotes the ceil

function of a. The remainder of this paper is organized as
follows. The HTP (Algorithm 1) and MHTP (Algorithm 2)
algorithms are described in Section 2. Section 3 presents a
theoretical analysis of the MHTP. Numerical experiments
are presented in Section 4. Finally, conclusions are drawn
in Section 5.

2. Algorithm: MHTP

As mentioned earlier, the classical HTP uses the negative
gradient at the current point xp as the search direction and
then resorts to a hard thresholding operator to ensure feasi-
bility. Hence, the new iteration xpþ1 significantly depends on
the information at xp.

To improve the performance of HTP, we attempt to use
the information of the current point xp and the previous
point xp−1 to construct a new search direction. First, we
introduce an intermediate point up :¼xp þ 1−ð λÞxp−1 that
is a convex combination of xp and xp−1, where λ 2 0;ð 1�.
Replacing xp in the HTP by the intermediate point up leads
to MHTP; clearly, MHTP is reduced to HTP when λ¼ 1.
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3. Theoretical Analysis

A variety of available tools has been introduced to analyze
compressed sensing, such as coherence, RIP, null-space
properties, and range-space properties. These differences
and relationships are described in [24]. In this section, the
RIP concept is used to establish the convergence analysis,
finite convergence, and stability of the MHTP. Hence, we
first define the RIC and RIP.

Definition 1. [9, 24] Let A 2 Rm×n be a matrix with m≪ n
and s be a positive integer. The restricted isometry constant
(RIC) of order s denoted by δs :¼δs Að Þ is the smallest number
δ ≥ 0 such that

1 − δð Þ zk k22 ≤ Azk k22 ≤ 1þ δð Þ zk k22; ð3Þ

for any s -sparse vector z 2 Rn. The matrix A is said to satisfy
the RIP of order s if δs<1.

Note that the RIC satisfies δt ≤ δs as t ≤ s. The following
are some basic inequalities related to RIC, which are fre-
quently used in the theoretical analyses.

Lemma 1. [22, 24] Let u 2 Rn and v 2 Rm be the vectors, S ⊆
1;f 2;…; ng be an index set, and s be a positive integer. The
following statements hold.

(i) If jsupp uð Þ ∪ Sj ≤ s, then ∥ I − ATAð Þuð ÞS∥2 ≤
δs ∥ u∥2.

(ii) If jSj ≤ s, then ∥ ATvð ÞS∥2 ≤
ffiffiffiffiffiffiffiffi
1þp

δs ∥ v∥2:

Because xpþ1 is produced using the current point xp and
the previous point xp−1, the following three-terms inequality
plays a key role.

Lemma 2. [32] Suppose that a nonnegative sequence apf g ⊆
R with p¼ 0; 1;… satisfies

apþ1 ≤ b1ap þ b2ap−1 þ b3; p ≥ 1; ð4Þ

where b1, b2, b3≥0 and b1 þ b2<1. Then

ap ≤ ρp−1 a1 þ ρ − b1ð Þa0½ � þ b3
1 − ρ

; ð5Þ

with

0 ≤ ρ : ¼ b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 4b2

p
2

<1: ð6Þ

The following result estimates the error on ∥vp − xS∥2
using ∥xp − xS∥2 and ∥xp−1 − xS∥2, where vp ¼ up þ
μAT y−ð AupÞ and up ¼ λxp þ 1−ð λÞxp−1.

Lemma 3. Suppose that the sequence xpf g is generated by the
MHTP with an inaccurate measurement y ¼ Axþ e. Let vp :
¼up þ μAT y−ð AupÞ and S :¼Ls xð Þ. Then

vp − xSð ÞS∪Spþ1k k2 ≤ ϱλ xp − xSk k2
þϱ 1 − λð Þ xp−1 − xSk k2 þ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2s

p
e0k k2;

ð7Þ

where ϱ :¼μδ3s þ j1− μj and e0 :¼AxS þ e.

Input: a measurement matrix A, a measurement vector y, a sparsity level s, a step size μ. Perform the following steps:

S1. Start with s-sparse vector x0 2 Rn, typically x0 ¼ 0.

S2. Repeat

Spþ1 :¼Ls x
p þ μAT y − Axpð Þð Þ;

xpþ1 :¼argminz ∥y − Az∥2 : supp zð Þ ⊆ Spþ1f g;
until a stopping criterion is met.

Output: the s-sparse vector x∗.

ALGORITHM 1: Hard thresholding pursuit (HTP).

Input: a measurement matrix A, a measurement vector y, a sparsity level s, and two parameters μ>0, 0<λ ≤ 1. Perform the following
steps:

S1. Start with s-sparse vectors x0; x1 2 Rn, typically x0 ¼ x1 ¼ 0.

S2. Repeat

up :¼ λxp þ 1 − λð Þxp−1;
Spþ1 :¼ Ls up þ μAT y − Aupð Þð Þ;
xpþ1 :¼ argminz ∥y − Az∥2 : supp zð Þ ⊆ Spþ1f g;

until a stopping criterion is met.

Output: the s-sparse vector x∗.

ALGORITHM 2: Modified hard thresholding pursuit (MHTP).
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Proof. Note that

vp − xS
¼ μλ I − ATAð Þ xp − xSð Þ þ λ 1 − μð Þ xp − xSð Þ

þμATe0 þ μ 1 − λð Þ I − ATAð Þ xp−1 − xSð Þ
þ 1 − λð Þ 1 − μð Þ xp−1 − xSð Þ:

ð8Þ

Since jsupp xi −ð xSÞ ∪ S ∪ Spþ1j ≤ 3s for i¼ p; p− 1 and
jS ∪ Spþ1j ≤ 2s, it follows from Lemma 1 that

ATe0ð ÞS∪Spþ1k k2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2s

p
e0k k2; ð9Þ

I − ATAð Þ xi − xSð Þ½ �S∪Spþ1k k2 ≤ δ3s xi − xSk k2; i¼ p; p − 1:

ð10Þ

This together with Equation (8) leads to

vp − xSð ÞS∪Spþ1k k2
≤ μλ I − ATAð Þ xp − xSð Þ½ �S∪Spþ1k k2 þ λ 1 − μð Þ xp − xSð ÞS∪Spþ1k k2

þμ ATe0ð ÞS∪Spþ1k k2 þ μ 1 − λð Þ I − ATAð Þ xp−1 − xSð Þ½ �S∪Spþ1k k2
þ 1 − λð Þ 1 − μð Þ xp−1 − xSð ÞS∪Spþ1k k2

≤ λ μδ3s þ 1 − μj j½ � xp − xSk k2 þ 1 − λð Þ μδ3s þ 1 − μj j½ � xp−1 − xSk k2
þμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2s

p
e0k k2;

ð11Þ

where μ>0 and λ 2 0;ð 1� are used to ensure the coefficients
above are nonnegative. It yields Equation (7) and the proof is
complete. □

The following property of orthogonal projection is essen-
tial in the analysis of the MHTP, see for example [22, Equa-
tion (3.21)] and Zhao [25, p. 49].

Lemma 4. Given a vector x 2 Rn and its corresponding index
set S :¼Ls xð Þ, let y be the inaccurate measurement of x, i.e.,
y ¼ Axþ e, and T ⊂ 1;f 2;…; ng be an index set such that
jTj ≤ s. If z∗ satisfies

z∗ ¼ argmin
z y − Azk k2 : supp zð Þ ⊆ Tf g; ð12Þ

then

xS − z∗k k2 ≤
xSð ÞT

 
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ22s
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ δs

p
1 − δ2s

e0k k2; ð13Þ

where e0 :¼AxS þ e.

HTP is a mainstream thresholding algorithm for sparse
signal recovery. The best RIP-based bound for HTP is
δ3s<1=

ffiffiffi
3

p
≈ 0:577 [22]. The MHTP algorithm proposed in

this paper includes HTP as a special case; hence, the RIP-
based bound cannot exceed 1=

ffiffiffi
3

p
. The following theorem

provides an affirmative answer as to whether the conver-
gence of the MHTP can be established without decreasing
the upper bound.

Theorem 1. Suppose that the RIC, δ3s, of the measurement
matrix A and the step size μ satisfy

δ3s<
1ffiffiffi
3

p ≈ 0:577;
bη − 1bη 1 − δ3sð Þ <μ<

1þ bηbη δ3s þ 1ð Þ ; ð14Þ

where bη :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1−ðp

δ22sÞ. Then, the sequence xpf g generated
by the MHTP with y ¼ Axþ e satisfies

xp − xSk k2 ≤ C ⋅ ρ1ð Þp−1 þ q3
1 − ρ1

e0k k2; ð15Þ

where S :¼Ls xð Þ, e0 :¼ AxS þ e, ρ1 :¼ q1þ
ffiffiffiffiffiffiffiffiffiffiffi
q21þ4q2

p
2 <1,

C : ¼ x1 − xSk k2 þ ρ1 − q1ð Þ x0 − xSk k2; ð16Þ

and

q1 : ¼λbη μδ3s þ 1 − μj jð Þ; q2 : ¼ 1 − λð Þbη μδ3s þ 1 − μj jð Þ;
q3 : ¼μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 − δ2s

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ δs

p
1 − δ2s

:

ð17Þ

Proof. For xpþ1 and Spþ1 in MHTP, we have jSpþ1j ¼ s.
Replacing z∗ ¼ xpþ1 and T ¼ Spþ1 in Lemma 4 obtains

xpþ1
− xSk k2 ≤

xSnSpþ1

 
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ22s
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ δs

p
1 − δ2s

e0k k2: ð18Þ

Note that Spþ1 ¼Ls vpð Þ, where vp ¼ up þ μAT y−ð AupÞ
is given in Lemma 3. The term ∥xSnSpþ1∥2 can be estimated as
follows:
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xSnSpþ1

 
2 ¼ xS − vpð ÞSnSpþ1 þ vpð ÞSnSpþ1

 
2

≤ xS − vpð ÞSnSpþ1

 
2
þ vpð ÞSnSpþ1

 
2
:

ð19Þ

Since jSj ¼ s and Spþ1 is the index set of s-largest absolute
elements of vp, then

vpð ÞSnSpþ1

 
2
≤ vpð ÞSpþ1nS
 

2
¼ xS − vpð ÞSpþ1nS
 

2
; ð20Þ

where the last equality is due to xSð ÞSpþ1nS ¼ 0. It follows from
Equations (19) and (20) that

xSnSpþ1

 
2 ≤ xS − vpð ÞSnSpþ1

 
2

þ xS − vpð ÞSpþ1nS
 

2
≤

ffiffiffi
2

p
xS − vpð ÞSpþ1∪Sk k2:

ð21Þ

Using Lemma 3, Equation (21) becomes

xSnSpþ1

 
2 ≤

ffiffiffi
2

p
ϱλ xp − xSk k2 þ ϱ 1 − λð Þ xp−1 − xSk k2 þ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2s

p
e0k k2ð Þ; ð22Þ

where ϱ¼ μδ3s þ j1− μj. Inserting Equation (22) into Equa-
tion (18) yields

xpþ1
− xSk k2

≤ bη λ μδ3s þ 1 − μj jð Þ xp − xSk k2 þ 1 − λð Þ μδ3s þ 1 − μj jð Þ xp−1 − xSk k2ð Þ
þ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 − δ2s

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ δs

p
1 − δ2s

� �
e0k k2

¼ q1 xp − xSk k2 þ q2 xp−1 − xSk k2 þ q3 e0k k2;

ð23Þ

where bη ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1À δ22sð Þ

p
and qi i¼ 1;ð 2; 3Þ are given in

Equation (17).
Next, let us check whether Lemma 2 is applicable for Equa-

tion (23) under the condition Equation (14). From Equation
(17) and μ>0; λ 2 0;ð 1�, we see that qi ≥ 0 i¼ 1;ð 2; 3Þ. Hence,
it only needs to prove that q1 þ q2<1. Based on the fact δ2s ≤
δ3s and the condition δ3s< 1ffiffi

3
p in Equation (14), we have

δ3s<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ23s

2

r
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ22s

2

r
¼ 1bη ; ð24Þ

which implies that

bη − 1bη 1 − δ3sð Þ <1<
1þ bηbη 1þ δ3sð Þ : ð25Þ

If bη − 1=bη 1−ð δ3sÞ<μ ≤ 1, then

q1 þ q2 ¼ bη μδ3s þ 1 − μj j½ � ¼ bη 1 − μ 1 − δ3sð Þ½ �<1;

ð26Þ
where the first equality is given by Equation (17). On the
other hand, if 1<μ<1þ bη=bη 1ð þ δ3sÞ, then

q1 þ q2 ¼ bη μδ3s þ 1 − μj j½ � ¼ bη μ δ3s þ 1ð Þ − 1½ �<1:

ð27Þ

It follows that q1 þ q2<1 under Equation (14). Applying
Lemma 2 to Equation (23), we obtain Equation (15) with

ρ1 ¼ q1þ
ffiffiffiffiffiffiffiffiffiffiffi
q21þ4q2

p
2 <1: □

Remark 1. From the above argument, the requirement on δ3s
is a key factor in algorithm convergence. It is well-known that
if the measurement matrix A is taken as a standard Gaussian
random matrix, then the restricted isometry property can be
attained with high probability. More precisely, for a standard
Gaussian matrix A 2 Rm×n, if 0<η; ε<1 and

m ≥ 2η−2 s 1þ ln n=sð Þð Þ þ ln 2ε−1ð Þ½ �; ð28Þ
then the restricted isometry constant δs of 1=

ffiffiffiffi
m

p
A satisfies

δs ≤ 2þ ηg n; sð Þ½ � ⋅ ηg n; sð Þ; ð29Þ
with probability greater than or equal to 1− ε, where

g n; sð Þ : ¼1þ 2 1þ ln n=sð Þð Þ½ �−1=2: ð30Þ
Please see [24, Chapter 8] for more information.

The following result shows that, in the case of the accu-
rate measurement y ¼ Ax, the sequence xpf g generated by
the MHTP converges to the s-sparse signal x.

Corollary 1. Suppose that the RIC, δ3s, of the measurement
matrix A and the step size μ satisfy Equation (14). Then the
sequence xpf g generated by the MHTP with y ¼ Ax and
∥x∥0 ≤ s satisfies

xp − xk k2 ≤ ρ1ð Þp−1 x1 − xk k2 þ ρ1 − q1ð Þ x0 − xk k2ð Þ; ð31Þ
where ρ1<1 and q1 are given in Theorem 1. Moreover, xp

converges to x as pÀ!1.
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The following results establish the finite termination
properties of the MHTP. It only needs to consider the case
where x is nonzero; otherwise, x is recovered at the first
iteration because the initial point x0 is taken as 0 in
the MHTP.

Theorem 2. Suppose that the RIC, δ3s, of the measurement
matrix A and the step size μ satisfy Equation (14). Then
MHTP can recover the nonzero vector x 2 Rn with ∥x∥0 ≤ s
from y ¼ Ax in at most

p∗ : ¼
ln

ffiffiffi
2

p bC=θ� �
ln 1=ρ1ð Þ

2
666

3
777þ 2; ð32Þ

iterations, where θ :¼mini2S jxij, S :¼ supp xð Þ, ρ1<1 is given
in Theorem 1 and

bC : ¼ x1 − xk k2 þ ρ1 − q1ð Þ x0 − xk k2: ð33Þ

Proof. For vp ¼ up þ μATA x−ð upÞ, we claim that the fol-
lowing condition

vpð Þkj j> vpð Þtj j; 8 k 2 S and t 2 S̄ ; ð34Þ

is sufficient to ensure Ls vpð Þ ¼ S. Indeed, since Spþ1 ¼
Ls vpð Þ and xpþ1 is the least-square solution in the subspace
Spþ1, that is,

xpþ1 ¼ argmin
z

y − Azk k2 : supp zð Þ ⊆ Spþ1f g; ð35Þ

then xpþ1 ¼ x in this case. To establish the finite termination
property, we just need to show the validity of Equation (34)
as p ≥ p∗, where p∗ is given by Equation (32). Since
k 2 S¼ supp xð Þ, we have jsupp xi −ð xÞ ∪ k;f tgj ≤ 2sþ 1
as i¼ p; p− 1. From Lemma 1(i), one has

I − ATAð Þ xi − xð Þ½ � k;tf g
 

2
≤ δ2sþ1 xi − xk k2; i¼ p; p − 1:

ð36Þ

This together with Equation (8) yields

vp − xð Þ k;tf g
 

2

≤ μλ I − ATAð Þ xp − xð Þ½ � k;tf g
 

2
þ λ 1 − μj j xp − xð Þ k;tf g

 
2

þμ 1 − λð Þ I − ATAð Þ xp−1 − xð Þ½ � k;tf g
 

2
þ 1 − λð Þ 1 − μj j xp−1 − xð Þ k;tf g

 
2

≤ λ μδ2sþ1 þ 1 − μj j½ � xp − xk k2 þ 1 − λð Þ μδ2sþ1 þ 1 − μj j½ � xp−1 − xk k2:

ð37Þ

Since δ2sþ1 ≤ δ3s and bη ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1À δ22sð Þ

p
>1, it follows

from Equations (26) and (27) that

μδ2sþ1 þ 1 − μj j ≤ μδ3s þ 1 − μj j ≤ bη μδ3s þ 1 − μj j½ �<1:

ð38Þ

CombiningEquations (37) and (38) andCorollary 1,we obtain

vp − xð Þ k;tf g
 

2
≤ λ xp − xk k2 þ 1 − λð Þ xp−1 − xk k2
≤ bC λ ρ1ð Þp−1 þ 1 − λð Þ ρ1ð Þp−2½ �
¼ bC 1þ ρ1 − 1ð Þλ½ � ρ1ð Þp−2
< bC ρ1ð Þp−2;

ð39Þ

where the last inequality is ensured by ρ1<1 and λ 2 0;ð 1�,
and bC is given by Equation (33). It follows that

vp − xð Þkj j þ vp − xð Þtj j ≤ ffiffiffi
2

p
vp − xð Þ k;tf g

 
2
<

ffiffiffi
2

p bC ρ1ð Þp−2:
ð40Þ

Since θ ¼mini2S jxij, by using the triangle inequality, we get

vpð Þkj j ¼ vp − x þ xð Þkj j ≥ θ − vp − xð Þkj j; ð41Þ

for any k 2 S. Because of t 2 S̄ and S¼ supp xð Þ, then
j vpð Þtj ¼ j vp − xð Þtj. For p ≥ p∗, it follows from Equations
(40) and (41) that

vp − xð Þkj j þ vpð Þtj j ¼ vp − xð Þkj j þ vp − xð Þtj j
<

ffiffiffi
2

p bC ρ1ð Þp−2<θ ≤ vp − xð Þkj j þ vpð Þkj j; ð42Þ

where the second inequality is ensured by Equation (32) and
p ≥ p∗. This shows the validity of Equation (34) and the
proof is complete. □

Given two integers i; j, define

σj xð Þi : ¼ inf
v

x − vk ki : vk k0 ≤ jf g; ð43Þ

which describes the error of the best j-term approximation of
a vector x with respect to i-norm [24, Definition 2.2]. Recall
in the following lemma a useful inequality associated with
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σj zð Þ2 and ∥z∥1, which is used to analyze the stability
of MHTP.

Lemma 5. [24, Theorem 2.5]. For a given z 2 Rn and a posi-
tive integer j, we have

σj zð Þ2 ≤
1

2
ffiffi
j

p zk k1: ð44Þ

The stability of MHTP is given in the following result.

Theorem 3. Suppose that the RIC, δ3s, of the measurement
matrix A and the step size μ satisfy Equation (14). Then for a
given x 2 Rn and e 2 Rm, the sequence xpf g generated by the
MHTP with y ¼ Axþ e satisfies

x − xpþ1k k2 ≤
1
2
þ q3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δτ

p
1 − ρ1

� �
1ffiffiffi
τ

p σk xð Þ1
þ q3
1 − ρ1

ek k2 þ C ρ1ð Þp;
ð45Þ

where ρ1, q3, C are given in Theorem 1, k :¼ds=2e and τ :
¼s− k.

Moreover, every cluster point of the sequence xpf g, say x∗,
satisfies

x − x∗k k2 ≤
1
2
þ q3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δτ

p
1 − ρ1

� �
1ffiffiffi
τ

p σk xð Þ1 þ
q3

1 − ρ1
ek k2:

ð46Þ

Proof. Using the triangle inequality, we have

x − xpþ1k k2 ¼ xS þ xS − xpþ1
 

2 ≤ xS
 

2 þ xS − xpþ1k k2:
ð47Þ

Denote S1 :¼Lk xð Þ; S2 :¼Lτ xS1

� �
; ⋯; Sl−1 :¼Lτ

xS1∪S2∪…∪Sl−2

� �
; Sl :¼Lr xS1∪S2∪…∪Sl−1

� �
; where the positive

integers l; r satisfy l−ð 2Þτþ kþ r ¼ n and r ≤ τ. Note that
S1 ∪ S2 ¼ S and S ¼ ∑l

i¼3Si. For S1 ¼Lk xð Þ, S¼Ls xð Þ and
k¼ s− τ, we have

xS
 

2 ¼ σs−k xS1

� �
2
≤

1

2
ffiffiffiffiffiffiffiffiffiffi
s − k

p xS1

 
1
¼ 1
2

ffiffiffi
τ

p σk xð Þ1;

ð48Þ

where the equalities can be obtained from Equation (43) and
the inequality follows from Lemma 5. By Theorem 1 and the
triangle inequality, one has

xS − xpþ1k k2 ≤ C ρ1ð Þp þ q3
1 − ρ1

AxS þ e
 

2 ð49Þ

≤ C ρ1ð Þp þ q3
1 − ρ1

∑
l

i¼3
AxSi

 
2 þ ek k2

� �
: ð50Þ

It follows from [24, Lemma 6.10] that

xSj

 
2
≤

1ffiffiffi
τ

p xSj−1

 
1
; j¼ 3;…; l: ð51Þ

Combining Equation (3) with Equation (51) yields

∑
l

i¼3
AxSi

 
2 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δτ

p
∑
l

i¼3
xSi

 
2 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δτ

p 1ffiffiffi
τ

p ∑
l−1

i¼2
xSi

 
1

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δτ

p 1ffiffiffi
τ

p σk xð Þ1;

ð52Þ

where the last inequality is due to the fact

∑
l−1

i¼2
xSi

 
1 ≤ xS1 k1 ¼ σk xð Þ1:

 ð53Þ

Combining Equations (47)–(49) with Equation (52)
yields Equation (45).

From Equation (45) and ρ1<1, we conclude that the
sequence xpf g is bounded and hence there exists at least
one cluster point. Assume without loss of generality that x∗

is a cluster point of xpf g. The Formula (46) follows by taking
pÀ!1 in Equation (45). □

4. Numerical Experiments

All experiments are conducted on a personal computer with
the processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz
and 4GB memory. To demonstrate the effectiveness of
MHTP for sparse signal recovery, we compare it with several
mainstream algorithms in synthetic and real-world experi-
ments. For the sake of convenience, we provide the following
parameter descriptions and abbreviated forms for these com-
paring algorithms used in numerical experiments in Table 1.
There are a total of six algorithms involved.

Let x1 ¼ x0 ¼ 0 be the initial points for the MHTP and
x0 ¼ 0 be the initial point for other algorithms. Because the

TABLE 1: The description of the parameters and the abbreviation of
the algorithm name.

Abbreviation Description

λ The coefficient of the convex combination
μ The coefficient of the momentum term
MHTP Modified hard thresholding pursuit
HTP Hard thresholding pursuit
NSHTP Newton-step-based hard thresholding pursuit
CoSaMP Compressive sampling matching pursuit
SP Subspace pursuit
gOMP Generalized orthogonal matching pursuit
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dimensions in this study are larger than those in [30], the
algorithmic parameters in the NSHTP are taken as μ1 ¼ 22
and ϵ¼max σ21f þ 1; μ1 − σ2mg through numerical tests to
acquire the better recover capability, where σ1 and σm are
the largest and smallest singular values of the realized sensing
matrix, respectively. Let min s;f m=Ng be the maximum
number of iterations for the gOMP [36], where N represents
the index corresponding to N largest correlation in magni-
tude. For other algorithms, the maximum numbers of itera-
tions are set to 50.

4.1. Synthetic Data. In this subsection, we discuss the perfor-
mances of these algorithms using synthetic data. All mea-
surement matrices A 2 Rm×n and sparse vectors x∗ 2 Rn are
randomly generated with n¼ 2000, whose elements are
independently and identically distributed. Specifically, A is
taken as a standard Gaussian random matrix, and the non-
zero entries of x∗ and their positions follow standard normal
and uniform distributions, respectively. The experiments are
performed with accurate measurement y :¼Ax∗ and inaccu-
rate measurement y :¼Ax∗ þ ϵh, where ϵ is the noise level
and h is a standard Gaussian noise vector. Let

xp − x∗k k2= x∗k k2 ≤ 10−3; ð54Þ

be the criterion for a successful recovery.

4.1.1. Successful Frequencies and Average Recover Time. In
this section, we compare the recover capability of these algo-
rithms with a fixed m¼ 500, and the sparsity level s ranges
from 1–296 with a step size of 5. For each given s, 100
random instances are used to test the successful frequencies.
We first consider the influence of the parameter λ on the
recover capability of the MHTP with a step size of μ¼ 0:006.

The corresponding results are shown in Figures 1 and 2,
wherein Figures 1 and 2 correspond to the accurate and
inaccurate measurement with the noise level ϵ¼ 0:005.
The novel idea of the MHTP is the combination of the cur-
rent point xp and the previous point xp−1, where the param-
eter λ is the coefficient of this convex combination. In
general, different values of λ represent different weights of
information used for xp and xp−1. It is preferable that λ is not
selected too close to 1 or 0, which helps us make more use of
the information provided by the two points xp and xp−1. The
numerical experiment illustrates this phenomenon: the
recover capability of the MHTP is weaker as λ 2 0:1;f 0:2;
0:9; 1g whether in the absence or presence of noise. How-
ever, the recover capability of the MHTP is powerful and
does not significantly change with respect to λ because it
lies in the interval 0:3;½ 0:8�. Based on this observation, we
set λ¼ 0:6 and μ¼ 0:006 for MHTP in the remainder of this
subsection.

Let a :¼bη μδ3s þð j1− μjÞ and b :¼1=a. Note that a<1
and b>1 under Equation (14) in Theorem 1. Since q1 ¼ λa
and q2 ¼ 1−ð λÞa, then

ρ1 ¼
λaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2a2 þ 4 1 − λð Þa

p
2

¼ a
2

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4 1 − λð Þb

q� �
:

ð55Þ

Let F λð Þ :¼λþ ffiffiffiffiffiffiffiffiffiffi
λ2 þp

4 1−ð λÞb. Then

F0 λð Þ ¼ 1þ 2λ − 4b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4 1 − λð Þb

p <0: ð56Þ

Thus F λð Þ strictly decreases in the interval 0;½ 1�. In the-
ory, under the convergence condition Equation (14), ρ1
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FIGURE 1: Successful frequencies of the modified hard thresholding pursuit (MHTP) with different λ by accurate measurements.
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decreases with a increased λ, which corresponds to a better
recovery effect. This is consistent with the phenomenon
shown in Figures 1 and 2, where λ 2 0:1;½ 0:8�. However,
checking condition Equation (14) is intractable because of
the difficulty of computing the RIC δ3s. By contrast, the
theoretical analysis above is not consistent with the numeri-
cal results shown in Figures 1 and 2 with λ 2 0:9;½ 1�, which
may be the results of the range of μ in Equation (14) not
being satisfied or other numerical limitations, such as the
maximum number of iterations. This is not clear at present

and will be further discussed in the future. Note that there
often exists a gap between the theoretical and numerical
results for sparse optimization algorithms, including the
MHTP, owing to the theoretical analysis technique or
numerical limitations.

In Figure 3, the performances of the algorithms, includ-
ing MHTP, NSHTP, HTP, SP, gOMP, and CoSaMP are
compared under noiseless and noisy settings. Let μ2 ¼
0:003 be the step size for the HTP and let the parameter
for the gOMP be N ¼ 5. These parameters are selected via
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FIGURE 3: Comparison of successful frequencies. (a) Accurate measurements and (b) inaccurate measurements.
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numerical tests based on the recover capabilities of the algo-
rithms. The results reveal that the MHTP performs better
than other algorithms, even in the noisy settings, and all
algorithms are stable under small perturbation with ϵ¼
0:01 except for CoSaMP.

Corresponding to Figure 3(a), comparisons of the aver-
age number of iterations and average recover time (CPU) of
these algorithms in noiseless environments are shown in
Figure 4. From Figure 4(a), it is clearly observed that the
average number of gOMP depends on the sparsity level s
and its maximum ism=5¼ 100, whereas the average number
of other algorithms is not more than 50. The algorithm is
regarded as failing to recover the sparse vector provided that
the average number reaches the maximum. Figure 4(a) indi-
cates that the average numbers of all algorithms except the
MHTP reach their maximums at s ≤ 220, that is, only the
MHTP can recovery the sparse signal as s 2 220;½ 240Þ,
which is consistent with Figure 3(a).

A comparison of the average recover time for these algo-
rithms with s ≤ 126 is shown in Figure 4(b). The average
recover time is closely related to the computational complex-
ity of the algorithm. Given a measurement matric A 2 Rm×n

and a s-sparse vector x∗, the complexity of these algorithms

after p iterations is shown in Table 2. It is not difficult to see
that the complexities of HTP, MHTP, CoSaMP, and SP are of
the same order, while that of NSHTP is the largest and that of
gOMP is the smallest (because the iteration step for gOMP
being dependent on s and less thanm). In Figure 4(b), NSHTP
requires more time than the other algorithms, which is con-
sistent with the results in Table 2. The result of Figure 4(b)
shows that the average time consumed by gOMP and SP is
much longer than that consumed by MHTP and HTP, and
HTP always requires less time than MHTP. Recall from
Figure 4(a) that the average number of iterations of the
MHTP is greater than that of the HTP for successful recovery
as s<180. However, the average time of the MHTP is almost
the same as that of the CoSaMP as s ≤ 80, but the latter
increases quickly with an increase in s as s ≥ 80. In summary,
the MHTP is competitive with other algorithms in terms of
recover capability and average recover time.

4.1.2. Phase Transition Curves. In the following experiments,
we display the performance of these algorithms in terms of
Phase Transition Curves (PTC) [32, 37] using logistic regres-
sion curves with a 50% success rate. Different from the logis-
tic regression model used in [32, 37], we select “glmfit”
function in Matlab to gain PTC directly. Let κ :¼m=n be
the undersampling rate and ϖ :¼s=m be the oversampling
rate. The κ;ð ϖÞ-plane is often called the phase transition
plane, where the region below the PTC corresponds to the
successful recovery region, and the region above corresponds
to the failure region. Detailed information regarding the PTC
and recovery regions can be found in [37]. To generate PTC,
we collect 13 groups of κ by equally dividing the interval 0:1;½
0:7�, and determine the values of ϖ in PTC using ‘glmfit’
function.

Let us further discuss the influence of λ on MHTP from a
PTC perspective. Take 10 different values of λ 2 0:1;½ 1� to

TABLE 2: The complexity of algorithms after p iterations.

Algorithms Complexity

CoSaMP O pmnð þ pm3Þ
gOMP O pmnð þ p2mÞ
HTP O pmnð þ pm3Þ
MHTP O pmnð þ pm3Þ
NSHTP O pmn2ð þ pn3 þ ps3Þ
SP O pmnð þ pm3Þ
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FIGURE 4: Comparison of recovery efficiency. (a) Average number of iterations and (b) average recover time.
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generate the PTCs in Figure 5, where Figures 5(a) and 5(b)
correspond to μ¼ 2:5=m and μ¼ 1=m, respectively. In
Figure 5(a), we find that the PTC with λ 2 0:1;f 0:2; 0:9; 1g
is lower than that of the others as κ is small, which indicates
that the recover capability of the MHTP in these cases is
weaker. As λ 2 0:3;½ 0:8�, the corresponding PTC does not
change significantly. This phenomenon shows that the
MHTP admits a relatively larger step size μ with a suitable

λ compared with that of the HTP, which is a special case of
the MHTP with λ¼ 1. However, as shown in Figure 5(b), the
recovery performance of the MHTP is insensitive to changes
in λ when μ¼ 1=m. By picking λ¼ 0:6, we select different μ
to generate the PTC as shown in Figure 6, indicating that the
recover capability of the MHTP with μ¼ 2:5=m is stronger
than that of μ¼ 1=m. That is, a stronger recover capability of
the MHTP can be obtained by increasing the step size μ

κ = m/n
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FIGURE 5: The Phase Transition Curves (PTC) of the MHTP for different λ. (a) μ¼ 2:5=m and (b) μ¼ 1=m.
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properly. However, acquiring the optimal step size μ is
intractable in practice. Subsequently, we discuss the relation-
ship between μ and m based on the recover capability.

It is well known that the step size plays a vital role in the
gradient descent method, and hence, the choice of step size μ
in the MHTP is crucial for the recovery of sparse signals.
Base on recover capability, we select the appropriate param-
eter μ for MHTP through numerical experiments as m ran-
ged from 200 to 1,400 with a step size 200. In this process, the
recommended value of μ is given as

μ 2 0:012; 0:006; 0:0050; 0:0045; 0:004; 0:0038; 0:0036f g:
ð57Þ

Using Lagrange interpolation, we establish the following
relation betweenm and μ from the above data approximately

μ mð Þ : ¼ 3:906m6 × 10−20 − 2:474m5 × 10−16

þ 6:276m4 × 10−13

− 8:151m3 × 10−10 þ 5:723m2 × 10−7

− 2:09m × 10−4 þ 0:0365;

ð58Þ

and the corresponding curve is shown in Figure 7(a). Simi-
larly, the recommended value of μ2 in HTP is given by

μ2 2 0:006; 0:004; 0:003; 0:0029; 0:0028; 0:0024; 0:0023f g;
ð59Þ

which results in

μ2 mð Þ : ¼ 3:038m6 × 10−20 − 1:771m5 × 10−16

þ 4:132m4 × 10−13

− 4:906m3 × 10−10 þ 3:109m2 × 10−7

− 1:006m × 10−4 þ 0:016;

ð60Þ

see Figure 7(b).

In the following experiments, the parameters μ mð Þ and
μ2 mð Þ are obtained from Equations (58) and (60), respec-
tively. The corresponding curves are presented in Figure 7,
which show that the value of μ is nonlinear and decreases as
m increases. The trends for the MHTP and HTP are similar.
Numerically, the value of μ mð Þ is almost twice that of μ2 mð Þ
for the fixed m. A comparison of the PTC is shown in
Figure 8, where Figure 8(a) corresponds to accurate measure-
ments, whereas Figure 8(b) corresponds to inaccurate mea-
surements with a noise level ϵ¼ 0:01. Figure 8 shows that
the PTC of the MHTP is the highest in the noiseless and
noisy settings, indicating that recover capability of the
MHTP is stronger than other algorithms. Compared with
Figures 8(a) and 8(b), we find that all algorithms, except
CoSaMP, are stable under a small disturbance account
ϵ¼ 0:01.

In the common recovery region of the algorithms, we
compare their average recover time in noiseless environ-
ments, see Figures 9–11, where ϖ is ranged from 0.02 to
0.8 with a step size 0.02. For a given κ;ð ϖÞ, 10 random
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data A;ð x∗Þ are tested, and the average runtime for recovery
is recorded when the success rate is greater than or equal to
50%. The algorithm with the shortest average recover time is
selected, as shown in Figure 9, often called an Algorithm
Selection Map [32, 37]. It should be noted that only three
algorithms including MHTP, HTP, and CoSaMP are shown
in the Figure 9 because the other algorithms are always
slower than one of them. Figure 9 shows that the MHTP is
the fastest algorithm when ϖ is large, whereas HTP and

CoSaMP are the fastest algorithms when ϖ is medium and
small.

The average runtime for successful recovery of the fastest
algorithm is shown in Figure 10, which reveals that the aver-
age time consumed by the fastest algorithm is less than one
second as ϖ ≤ 0:4, whereas it significantly increases in other
regions when ϖ is large. The ratios of average runtime of the
other algorithms to that of the fastest algorithm are summa-
rized in Figure 11. The ratio of MHTP is less than 1.5 in most
areas, and is close to 1 for large ϖ, which implies that the
advantage of MHTP lies in the region with larger ϖ.
Figure 11(c) shows that the average runtime of HTP is close
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FIGURE 8: The PTC of algorithms. (a) Accurate measurements and (b) inaccurate measurements.
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to that of the fastest algorithm almost everywhere. Figure 11(e)
shows that the ratio of CoSaMP is close to 1 in the regions with
a small sparsity level, which corresponds to the case with small
κ or large κ and smallϖ. However, the ratio lies in the interval
[2, 6] with the increase of κ and ϖ. From Figure 11(b), we see
that NSHTP takes more time than other algorithms because its
ratio is greater than 20 in many areas. Figures 11(d) and 11(f)
show that the ratios corresponding to SP and gOMP are nearly
2–4 and 4–7, respectively. These phenomena indicate that
MHTP and HTP are faster than NSHTP, SP, CoSaMP, and
gOMP in most cases.

4.2. Reconstruction of Real Images. In the following real-
world experiments, we use standard test images, including

the Lena, Goldhill, Peppers, and Barbara images, to evaluate
the performances of these algorithms. The size of each image
is 512× 512 pixels. For a given image X 2 Rn×n with n¼ 512,
using the discrete wavelet transform, we obtain DXDT ¼ bX ,
where bX 2 Rn×n is a sparse or compressible matrix and D 2
Rn×n is an orthonormal wavelet matrix. Taking a normalized
standard Gaussian matrices B in Rm×n as the measurement
matrix of X, wherem¼ dκ ⋅ ne and κ is the sampling rate, we
obtain the measurement Y ¼ BX 2 Rm×n. It follows thatbY ¼ AbX , where bY ¼ YDT and A¼ BDT arem by n matrices.
We now aim to recover bX from the linear measurementsbY ¼ AbX , and reconstruct the original image X.

Comparisons of the peak signal-to-noise ratio (PSNR)
and runtime of these algorithms with the sampling rates
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FIGURE 11: The average recover time of algorithms. (a) MHTP, (b) NSHTP, (c) HTP, (d) SP, (e) CoSaMP, and (f ) gOMP.
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κ 2 0:3;f 0:4; 0:5g are shown in Tables 3 and 4, wherein the
“sym8” and “coif5” wavelet are used to acquire the sparse
representation, respectively. In the experiments, the sparsity
level is set as s¼ d0:15 ⋅ ne and the parameter N in gOMP is
selected as N ¼ 3. Corresponding to κ 2 0:3;f 0:4; 0:5g, the
step sizes μ2 (for HTP) and μ (for MHTP) are set to 2:3;f 1:6;
1:4g and 3:4;f 2:8; 2:4g, respectively.

For a given image and a fixed κ, letHP be the largest value
of the PSNR (see bold) and ST be the minimum runtime. Let
MP,MT represent the PSNR and runtime of MHTP, respec-
tively. We denote ΔP :¼HP− MP and ΔT :¼MT − ST .
Thus, the reconstruction capability of MHTP increases with
the decrease of ΔP. Similarly, the speed of MHTP increases
with a reduced ΔT ; in particular, MHTP is the fastest algo-
rithm when ΔT ¼ 0. From the values of ΔP or PSNR (see
bold), we observe that the PSNR of MHTP is the largest in
most cases whenever using coiflet or symlet wavelet trans-
form; that is, MHTP outperforms the other algorithms in
terms of reconstruction quality (compare Tables 3 and 4).

In particular, when κ ¼ 0:3, the MHTP consumes more time
than the gOMP, however, the MHTP is faster than the gOMP
in other situations. Moreover, the MHTP always requires less
time than the NSHTP, SP and CoSaMP for any given κ,
whereas the time consumed by the MHTP is close to that of
the HTP. By comparing Tables 3 and 4, it is found that the
source ofHP is different for ‘Goldhill’. Specifically, in Table 3,
HP only comes from NSHTP at κ ¼ 0:3; in Table 4, for any
κ, HP all comes from NSHTP. Hence the sparsity of the
same image in the discrete wavelet transform domain is
different with respect to different wavelets (such as ‘sym8’
and ‘coif5’), which in turn affects the reconstruct capability
of the algorithm.

Corresponding to the first row in Table 3, the perfor-
mance of these algorithms in visual quality via the image
“Lena” is shown in Figures 12 and 13. From Figure 12, the
reconstruction quality of the MHTP is improved remarkably
with an increase in the sampling rate κ in the interval 0:3;½
0:5�. A comparison of the images reconstructed using these

TABLE 3: Comparison of PSNR (dB) and runtime (seconds) of algorithms with “sym8” wavelet.

κ
MHTP NSHTP HTP gOMP SP CoSaMP

ΔP ΔT
PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Lena
0.3 32.10 15.55 31.10 98.83 31.83 15.40 31.40 11.10 28.76 63.19 28.59 47.26 0.00 4.45
0.4 34.11 20.77 33.33 122.94 33.76 20.93 33.11 24.66 32.73 87.47 27.32 59.58 0.00 0.00
0.5 35.52 45.92 35.21 153.44 35.37 45.84 34.46 47.20 35.16 95.77 34.04 96.64 0.00 0.07

Goldhill
0.3 29.73 15.40 30.14 98.23 29.70 15.88 29.70 11.55 29.15 63.56 28.52 46.82 0.41 3.85
0.4 30.71 20.67 30.56 121.60 30.47 20.77 30.14 25.88 30.07 87.70 27.39 59.55 0.00 0.00
0.5 31.64 45.75 31.39 152.65 31.50 45.92 30.83 48.67 31.32 95.77 30.29 96.08 0.00 0.00

Peppers
0.3 30.66 15.47 30.34 98.09 30.88 15.54 30.46 11.41 28.78 63.34 28.12 46.99 0.22 4.06
0.4 32.74 20.52 31.94 121.98 32.44 20.87 31.79 25.35 31.41 87.72 27.51 59.77 0.00 0.00
0.5 34.30 45.66 33.78 152.96 34.09 45.80 33.24 48.04 33.96 95.95 32.86 96.47 0.00 0.00

Barbara
0.3 30.45 15.65 30.35 97.91 30.41 15.40 30.24 11.38 28.89 63.28 28.39 46.71 0.00 4.27
0.4 32.14 20.53 31.58 121.36 31.75 20.80 31.31 26.11 31.18 87.70 27.58 59.20 0.00 0.00
0.5 33.48 45.88 33.14 154.26 33.32 45.71 32.57 47.80 33.16 96.25 32.25 96.39 0.00 0.18

Bold values represent the maximum value of PSNR among all algorithms under the same set of tests.

TABLE 4: Comparison of PSNR (dB) and runtime (seconds) of algorithms with “coif5” wavelet.

κ
MHTP NSHTP HTP gOMP SP CoSaMP

ΔP ΔT
PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Lena
0.3 32.32 13.27 31.60 93.66 32.10 13.32 31.83 9.88 29.29 58.61 28.21 41.13 0.00 3.40
0.4 34.33 18.72 33.78 117.44 33.94 18.80 33.22 22.00 33.14 80.42 27.53 53.35 0.00 0.00
0.5 35.51 42.29 35.35 149.09 35.37 42.47 34.60 42.32 35.24 88.06 34.23 87.66 0.00 0.00

Goldhill
0.3 29.70 13.76 30.89 94.03 29.85 13.87 29.53 10.31 29.79 58.69 28.47 41.92 1.19 3.45
0.4 30.62 18.27 30.82 116.52 30.46 18.33 30.02 23.09 30.21 79.88 27.64 52.98 0.20 0.00
0.5 31.56 42.30 31.60 147.15 31.49 42.49 30.92 43.66 31.43 87.78 30.61 89.11 0.03 0.00

Peppers
0.3 31.37 13.35 31.17 94.04 31.16 13.54 30.96 10.02 29.65 58.46 28.28 41.33 0.00 3.34
0.4 33.18 18.28 32.80 116.37 32.91 18.34 32.07 22.23 32.17 80.04 27.62 53.02 0.00 0.00
0.5 34.51 42.38 34.18 147.33 34.44 42.40 33.61 43.19 34.28 88.03 33.07 88.27 0.00 0.00

Barbara
0.3 30.81 13.31 30.46 93.63 30.76 13.39 30.54 10.49 29.72 58.79 28.43 41.49 0.00 2.83
0.4 32.40 18.17 32.09 117.88 32.11 18.23 31.52 22.85 31.68 80.10 27.63 53.53 0.00 0.00
0.5 33.79 42.03 33.38 147.83 33.54 42.11 32.88 43.18 33.54 87.57 32.52 87.62 0.00 0.00

Bold values represent the maximum value of PSNR among all algorithms under the same set of tests.
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FIGURE 12: The performance of the MHTP with different sampling rates. (a) Original, (b) κ ¼ 0:3, (c) κ ¼ 0:4, and (d) κ ¼ 0:5.
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FIGURE 13: Continued.
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algorithms with κ ¼ 0:4 is shown in Figure 13, which indi-
cates that the reconstruction quality of all algorithms is simi-
lar, except for CoSaMP; and one possible reason for CoSaMP
failure is high sparsity level. Using the above mentioned
experiments, we show that the MHTP is competitive with
the other four mainstream algorithms in terms of recon-
struction quality and runtime.

5. Conclusion

A new algorithm for solving the sparse optimization problem,
called MHTP, is proposed using the information of the cur-
rent point xp and previous point xp−1 to produce the new
iteration point xpþ1. Numerical experiments show that the
recovery capability of MHTP is stronger than that of several
mainstream algorithms, such as HTP, NSHTP, CoSaMP, SP,
and gOMP. The runtime ofMHTP is close to that of HTP and
is often less than that of the other four algorithms. Two inter-
esting but challenging research topics merit further investiga-
tion: one is to study other acceleration techniques such as the
Nesterov-accelerated gradient method to improve the effi-
ciency of the algorithms. In addition, MHTP is reduced to
the standard HTP because the coefficient of the convex com-
bination takes λ¼ 1. Hence, another research topic is whether
the efficiency of MHTP can be further improved by dynami-
cally adjusting the coefficients of the convex combinations in
the iterative process.
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