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Received: 15 June 2021 / Accepted: 21 January 2022 / Published online: 23 February 2022
© The Author(s) 2022

Abstract
The optimization problems with a sparsity constraint is a class of important global optimiza-
tion problems. A typical type of thresholding algorithms for solving such a problem adopts
the traditional full steepest descent direction or Newton-like direction as a search direction to
generate an iterate on which a certain thresholding is performed. Traditional hard threshold-
ing discards a large part of a vector, and thus some important information contained in a dense
vector has been lost in such a thresholding process. Recent study (Zhao in SIAM J Optim
30(1): 31–55, 2020) shows that the hard thresholding should be applied to a compressible
vector instead of a dense vector to avoid a big loss of information. On the other hand, the
optimal k-thresholding as a novel thresholding technique may overcome the intrinsic draw-
back of hard thresholding, and performs thresholding and objective function minimization
simultaneously. This motivates us to propose the so-called partial gradient optimal thresh-
olding (PGOT) method and its relaxed versions in this paper. The PGOT is an integration of
the partial gradient and the optimal k-thresholding technique. The solution error bound and
convergence for the proposed algorithms have been established in this paper under suitable
conditions. Application of our results to the sparse optimization problems arising from signal
recovery is also discussed. Experiment results from synthetic data indicate that the proposed
algorithm is efficient and comparable to several existing algorithms.
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1 Introduction

The optimization problem with a sparsity constraint

min
x∈Rn

{ f (x) : ‖x‖0 ≤ k} (1)

arises in many practical fields such as compressive sensing [20, 22, 37], signal processing [8],
wireless communication [15], pattern recognition [33], to name a few. In the model (1), ‖ · ‖0
is called the ’�0-norm’ which counts the number of nonzero entries of a vector. Depending on
application, the function f (x)may take different specific forms. For instance, in compressed
sensing scenarios, f (x) is usually taken as ‖y − Ax‖22 which is an error metric for signal
measurements. The problem (1) is known to be NP-hard, and the main difficulty for solving
this problem lies in locating the position of nonzero entries of a feasible sparse vector at
which f (x) is minimized.

The algorithms for solving (1) can be sorted into several categories including convex
optimization methods, heuristic algorithms, and thresholding algorithms. The convex opti-
mization methods include �1-minimization [11, 14], reweighted �1-minimization [13, 40],
and dual-density-based reweighted �1-minimization [37, 39, 41]. The heuristic-type methods
include orthogonal matching pursuit (OMP) [10, 32, 34], compressive sampling matching
pursuit (CoSaMP) [31], subspace pursuit (SP) [16, 17], and their variants. Thresholding-type
algorithms attract much attention due to their easy implementation and low computational
complexity [4, 6, 7, 9, 23, 27, 38].

The key step for thresholding-type iterative algorithms can be stated as

x p+1 = Tk
(
x p + λd

)
, (2)

where Tk(·) represents a thresholding operator that is used to produce a k-sparse vector, λ

denotes the stepsize and d is a search direction at the current iterate x p . Throughout the paper,
a vector x is said to be k-sparse if ‖x‖0 ≤ k. Several thresholding operators are widely used
in the literature, such as the hard thresholding [4, 6, 7, 9, 23, 27], soft thresholding [18, 21,
26, 28], and optimal k-thresholding [38, 42]. The steepest descent direction [5–7, 9, 24, 30]
and Newton-type direction [29, 35, 43, 44] are two search directions that are used by many
researchers.

Let Hk denote the hard thresholding operator which retains the largest k magnitudes and
zeroes out other entries of a vector. By setting Tk = Hk and d = −∇ f (x), the iterative
formula (2) is reduced to

x p+1 = Hk
(
x p − λ∇ f (x p)

)
, (3)

where ∇ f (x p) is the gradient of f at x p . The formula (3) is the well-known iterative hard
thresholding (IHT) initially studied in [5, 6]. The IHT can be enhanced by either attaching an
orthogonal projection (a pursuit step) to obtain the so-called hard thresholding pursuit (HTP)
method [9, 23] or by using an adaptive stepsize strategy to yield the so-called normalized
iterative hard thresholding (NIHT) [7]. While the algorithm (3) can reconstruct the vector
under suitable conditions (see [6, 22, 36]), but as pointed in [38, 42], the operator Hk may
cause certain numerical problems as well.
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To improve the performance of IHT, Zhao [38, 42] recently proposed the optimal k-
thresholding technique which stresses that thresholding of a vector should be performed
simultaneously with objective function reduction in the course of iterations. Replacing Hk

by the optimal k-thresholding operator Z#
k in (3) leads to the following iterative optimal

k-thresholding scheme:

x p+1 = Z#
k

(
x p − λ∇ f (x p)

)
.

The optimal k-thresholding of a vector u ∈ R
n with respect to the objective function f (x) is

defined as Z#
k (u) := u ⊗ w∗ with

w∗ = argmin
w

{
f (u ⊗ w) : eTw = k, w ∈ {0, 1}n

}
, (4)

where e ∈ R
n is the vector of ones and ⊗ denotes the Hadamard product of two vectors. To

avoid solving the above binary optimization problem, Zhao [38] suggests solving the tightest
convex relaxation of (4) instead. That is, replacing the binary constraint by its convex hull,
we obtain the following convex relaxation of the problem (4):

w = argmin
w

{
f (u ⊗ w) : eTw = k, 0 ≤ w ≤ e

}
.

The vector u ⊗ w is called the relaxed optimal k-thresholding of u.
The hard thresholding operator in (3) discards a large important part of a vector when

the vector is dense. This means some important information of the vector has been lost in
the process of hard thresholding. As pointed out in [38, 42], the hard thresholding should
be applied to a compressible vector instead of a dense vector in order to avoid a big loss
of information. Note that the vector x p − λ∇ f (x p) in (3) is usually dense since the search
direction −∇ f (x p) is not necessarily sparse. This motivates us to adopt the partial gradient
instead of the full gradient as a search direction in order to generate the following sparse or
compressible vector:

u p := x p − λHq(∇ f (x p))

on which some thresholding is then performed to generate the next iterate x p+1. In the
above formula, the integer number q > 0 controls the number of elements extracted from
the full gradient. In other words, we only use q significant entries of the gradient as our
search direction. We may use the hard thresholding of u p to produce an iterate satisfying the
constraint of the problem (1). However, as we pointed out before, the optimal k-thresholding
is more powerful and more efficient than the hard thresholding. This stimulates the following
iterative scheme:

x p+1 = Z#
k

(
x p − λHq(∇ f (x p))

)
. (5)

This is refer to as the partial gradient optimal thresholding (PGOT) algorithm in this paper,
which is described in detail in Sect. 2. The enhanced version of PGOT is called the partial
gradient relaxed optimal thresholding (PGROT). In order to maintain the k-sparsity of the
iterate, a further enhancement of PGOT and PGROT can be made by adding a pursuit step to
PGROT to eventually obtain the more efficient algorithm called the partial gradient relaxed
optimal thresholding pursuit (PGROTP), which is treated as the final version of the proposed
algorithm in the paper, actually being used to solve the problems. The solution error bound
and convergence analysis for our algorithms with q in the range q ∈ [2k, n] are shown
under the assumption of restricted isometry property (RIP). Simulations from synthetic data
indicate that PGROTP algorithm is robust and comparable to several existing methods.
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Thepaper is organized as follows.The algorithms are described inSect. 2. The error bounds
and global convergence of the proposed algorithms are established in Sect. 3. Numerical
results are given in Sect. 4 and conclusions are given in Sect. 5.

1.1 Notations

We first introduce some notations used throughout the paper. Rn is the n-dimensional
Euclidean space, and R

m×n is the set of m × n matrices. Vector e is the vector of ones.
Denote [N ] as the set {1, . . . , n}. Given a setΩ ⊆ [N ],Ω:=[N ]\Ω denotes the complement
set of Ω , and |Ω| is the cardinality of set Ω . For a vector x ∈ R

n , xΩ ∈ R
n denotes the

vector obtained from x by retaining elements indexed by Ω and zeroing out the remaining
ones. The set supp(x) = {i : xi 	= 0} is called the support of x , Lk(x) denotes the sup-
port of Hk(x), and Z#

k (·) denotes the optimal k-thresholding operator. For a matrix A, AT

denotes its transpose. The notation ⊗ represents the Hadamard product of two vectors, i.e.,
u ⊗ v = [u1v1, . . . , unvn]T . Given a number α, 
α� is the smallest integer number that is
larger than or equal to α.

2 Algorithms

In this paper, we focus on the following specific objective function:

f (x) = 1

2
‖y − Ax‖22 , (6)

where A is a given m × n matrix with m � n, and y is a given vector. Using this quadratic
function, the model (1) becomes

min
x∈Rn

{
1

2
‖y − Ax‖22 : ‖x‖0 ≤ k

}
. (7)

This problem has been widely used in data sparse representation, statistical regression, and
signal reconstruction via compressive sensing and in many other application settings. The
gradient of the function (6) is given as

∇ f (x) = −AT (y − Ax).

By using the major part of this specific gradient, we define the u p as follows:

u p = x p + λHq

(
AT (y − Ax p)

)
,

where 0 < q ≤ n is an integer number. The optimal thresholding of u p with respect to the
function (6) is given by Z#

k (u p) = u p ⊗ w∗, where

w∗ = argmin
w

{
‖y − A(u ⊗ w)‖22 : eTw = k, w ∈ {0, 1}n

}
.

Thus the partial gradient optimal k-thresholding (PGOT) algorithm (5) for solving problem
(7) can be stated as

x p+1 = Z#
k

(
x p + λHq

(
AT (y − Ax p)

))
.

For simplicity of algorithmic description and analysis, we set λ = 1 throughout the rest of
the paper. It should be stressed that in practical applications, suitable stepsize should be used
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in order to speed up the convergence of the algorithms. By the definition of Z#
k , the PGOT

algorithm can be described explicitly as follows.

Algorithm 1 Partial Gradient Optimal k-Thresholding (PGOT)

– Input: matrix A, vector y, sparsity level k, integer number q ≥ k, and initial point x0 = 0.
– Iteration:

u p = x p + Hq

(
AT (y − Ax p)

)
, (OT)

w p = argmin
w

{∥∥y − A(w ⊗ u p)
∥
∥2
2 : eT w = k, w ∈ {0, 1}n},

x p+1 = w p ⊗ u p (= Z#
k (u p)).

– Output: k-sparse vector x̂ .

To avoid solving the integer programming problem (OT), as suggested in [38], the binary
constraint w ∈ {0, 1}n in (OT) can be relaxed to 0 ≤ w ≤ e so that we obtain the partial
gradient relaxed optimal thresholding (PGROT) algorithm.

Algorithm 2 Partial Gradient Relaxed Optimal k-Thresholding (PGROT)

– Input: matrix A, vector y, sparsity level k, integer number q ≥ k, and initial point x0 = 0.
– Iteration:

u p = x p + Hq

(
AT (y − Ax p)

)
, (ROT)

w p = argmin
w

{∥∥y − A(w ⊗ u p)
∥∥2
2 : eT w = k, 0 ≤ w ≤ e},

x p+1 = Hk (w
p ⊗ u p).

– Output: k-sparse vector x̂ .

The solutionw p to (ROT) is not k-sparse in general. So the purpose of thefinal thresholding
step in PGROT to restore the k-sparsity of iterate. It is worth emphasizing that the use ofHk

here is different from the settings in traditional IHT, since the vector u p generated by the
partial gradient is (k + q)-sparse instead of being a usually dense vector in IHT.

The PGROT can be further enhanced by including a pursuit step (i.e., an orthogonal
projection step) to find a possibly better iterate than the point generated by PGROT. This
consideration leads to so-called PGROTP algorithm which is described in Algorithm 3. In
the next section, we perform a theoretical analysis for the proposed algorithms.

3 Error bound and convergence analysis

In this section, we establish the error bounds for the solution of the problem via the proposed
algorithms. The purpose is to estimate the distance between the iterate x p , generated by the
proposed algorithms, and the global solution of the problem (7). As an implication of the
error bounds, the global convergence of our algorithms can be instantly obtained for the
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Algorithm 3 Partial Gradient Relaxed Optimal k-thresholding Pursuit (PGROTP)

– Input: matrix A, vector y, sparsity level k, integer number q ≥ k, and initial point x0 = 0.
– Iteration:

u p = x p + Hq

(
AT (y − Ax p)

)
, (Pursuit step)

w p = argmin
w

{∥∥y − A(w ⊗ u p)
∥∥2
2 : eT w = k, 0 ≤ w ≤ e},

S p+1 = Lk (w
p ⊗ u p),

x p+1 = argmin
z

{‖y − Az‖2 : supp(z) ⊆ S p+1}.

– Output: k-sparse vector x̂ .

problem (7) in the scenarios of sparse signal recovery. Before going ahead, we first introduce
the restricted isometry constant (RIC) of the matrix A.

Definition 1 [11, 22] The s-th order restricted isometry constant (RIC) δs of a matrix A ∈
R
m×n is the smallest number δs ≥ 0 such that

(1 − δs) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs) ‖x‖22
for all s-sparse vector x , where s > 0 is an integer number.

We usually say that matrix A satisfies the RIP of order s if δs < 1. It is well known
that the random matrices such as Bernoulli and Gaussian matrices satisfy the RIP with an
overwhelming probability [11, 12]. The following property of RIC is frequently used in the
paper.

Lemma 1 [11, 23, 31] Suppose matrix A satisfy the RIP of order k. Given a vector u ∈ R
n

and a set Ω ⊆ [N ], one has
(i)

∥∥((
I − AT A

)
v
)
Ω

∥∥
2

≤ δt‖u‖2 if |Ω ∪ supp(v)| ≤ t .

(ii)
∥∥(AT u)Ω

∥∥
2 ≤ √

1 + δt ‖u‖2 if |Ω| ≤ t .

3.1 Main results for PGOT

The following two technical results concerning the properties of optimal k-thresholding and
hard thresholding operators are useful.

Lemma 2 [38, 42] Let x∗ ∈ R
n be the solution to the problem (7) and denote by η = y−Ax∗.

Given an arbitrary vector u ∈ R
n, let Z#

k (u) be the optimal k-thresholding vector of u. Then
for any k-sparse binary vector w∗ ∈ {0, 1}n satisfying supp(x∗) ⊆ supp(w∗), one has

∥∥Z#
k (u) − x∗∥∥

2 ≤
√

1 + δk

1 − δ2k

∥∥(x∗ − u) ⊗ w∗∥∥
2 + 2√

1 − δ2k
‖η‖2.

This result can be found from the proof of Theorem 4.3 in [38].

Lemma 3 [36] Let q ≥ s be an integer number. For any vector z ∈ R
n and any s-sparse

vector u ∈ R
n, one has

∥∥u − Hq(z)
∥∥
2 ≤

√
5 + 1

2
‖(u − z)Λ∪Ω‖2,
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where Λ = supp(u) and Ω = supp
(
Hq(z)

)
.

When s ≤ q , a s-sparse vector is also q-sparse. Thus Lemma 3 above follows exactly from
Lemma 2.2 in [36]. We are ready to prove the error bound and global convergence of the
algorithm PGOT.

Theorem 1 Let x∗ ∈ R
n be the solution of the problem (7) and η := y − Ax∗. Let q ≥ 2k

be a positive integer number. Suppose that the restricted isometry constant of A satisfies

δ3k < α∗, (8)

where α∗ ∈ (0, 1) is the unique real root of the univariate equation

(⌈q
k

⌉
+ 1

)2
α3 +

(⌈q
k

⌉
+ 1

)2
α2 + 2

3 + √
5
α − 2

3 + √
5

= 0. (9)

Then the sequence {x p} generated by PGOT satisfies that

∥
∥x p+1 − x∗∥∥

2 ≤ ρ p
∥
∥x0 − x∗∥∥

2 + τ

1 − ρ
‖η‖2,

where

ρ :=
√
5 + 1

2

(⌈q
k

⌉
+ 1

)
δ3k

√
1 + δk

1 − δ2k
< 1 (10)

is guaranteed under the condition (8), and the constant τ is given as

τ = (
√
5 + 1)

(⌈ q
k

⌉ + 1
)
(1 + δ2k) + 4

2
√
1 − δ2k

. (11)

In particular, if η = 0, the sequence {x p} generated by PGOT converges to x∗.

Proof Let η = y − Ax∗ and u p, x p+1 be the vectors generated at p-th iteration of PGOT,
i.e., u p = x p + Hq

(
AT (y − Ax p)

)
and x p+1 = Z#

k (u p). Let w∗ ∈ {0, 1}n be a k-sparse
vector such that supp(x∗) ⊆ supp(w∗). Applying Lemma 2 leads to

∥∥x∗ − x p+1
∥∥
2 = ∥∥x∗ − Z#

k (u p)
∥∥
2

≤
√

1 + δk

1 − δ2k

∥∥(
x∗ − u p) ⊗ w∗∥∥

2 + 2√
1 − δ2k

‖η‖2

≤
√

1 + δk

1 − δ2k

∥∥x∗ − u p
∥∥
2 + 2√

1 − δ2k
‖η‖2 ( since 0 ≤ w∗ ≤ e). (12)

Denote by Ω := Lq(AT (y − Ax p)). It is easy to see that | supp(x∗ − x p)| ≤ 2k. Thus, if
q ≥ 2k, by Lemma 3, we have

∥∥x∗ − u p
∥∥
2 =

∥∥∥x∗ − x p − Hq

(
AT (

y − Ax p)
)∥∥∥

2

≤
√
5 + 1

2

∥∥∥∥
(
x∗ − x p − AT (

y − Ax p)
)

Ω∪(S∪S p)

∥∥∥∥
2
, (13)
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where S = supp(x∗) and S p = supp(x p). Given a vector v ∈ R
n and two support sets

Λ1,Λ2 ∈ [N ]. It is easy to verify
∥
∥vΛ1∪Λ2

∥
∥
2 ≤ ∥

∥vΛ1

∥
∥
2 + ∥

∥vΛ2

∥
∥
2. Therefore,

‖(x∗ − x p − AT (y − Ax p))Ω∪(S∪S p)‖2 ≤
∥
∥
∥
(
x∗ − x p − AT (

y − Ax p)
)

Ω

∥
∥
∥
2

+
∥
∥
∥
(
x∗ − x p − AT (

y − Ax p)
)

S∪S p

∥
∥
∥
2
. (14)

Noting that | supp(xS − x p)| ≤ |S ∪ S p| ≤ 2k. The second term on the right-hand side of
(14) can be bounded. In fact, by Lemma 1, we have

‖(x∗ − x p − AT (y − Ax p))S∪S p‖2
=

∥
∥
∥
(
(I − AT A)(x∗ − x p) + AT η

)

S∪S p

∥
∥
∥
2

≤
∥
∥
∥
(
(I − AT A)(x∗ − x p)

)

S∪S p

∥
∥
∥
2
+

∥
∥
∥(AT η)S∪S p

∥
∥
∥
2

≤ δ2k
∥
∥x∗ − x p

∥
∥
2 + √

1 + δ2k ‖η‖2 . (15)

Setting t = ⌈ q
k

⌉
, the setΩ can be separated into t disjoint sets such thatΩ = T1∪T2 . . . , Tt ,

where |Ti | ≤ k for i = 1, . . . , t , and Ti ∩ Tj = ∅ if i 	= j . Thus we have

‖(x∗ − x p − AT (y − Ax p))Ω‖2

≤
t∑

i=1

∥∥∥∥
(
x∗ − x p − AT (

y − Ax p)
)

Ti

∥∥∥∥
2

≤
t∑

i=1

∥∥∥∥
[
(I − AT A)(x∗ − x p)

]

Ti

∥∥∥∥
2
+

t∑

i=1

∥∥∥∥
[
AT η

]

Ti

∥∥∥∥
2

≤ tδ3k
∥∥x∗ − x p

∥∥
2 + t

√
1 + δk ‖η‖2 , (16)

where the last inequality follows from Lemma 1 because |Ti ∪ supp(x∗ − x p)| ≤ 3k. Since
δ2k ≤ δ3k , combining (13)–(16) leads to

∥∥x∗ − u p
∥∥
2 ≤

√
5 + 1

2
(t + 1)δ3k

∥∥x∗ − x p
∥∥
2 +

√
5 + 1

2
(t + 1)

√
1 + δ2k ‖η‖2 . (17)

Substituting (17) into (12) yields
∥∥x p+1 − x∗∥∥

2 ≤ ρ
∥∥x p − x∗∥∥

2 + τ ‖η‖2 , (18)

where ρ and τ are given as (10) and (11), respectively. Since δk ≤ δ2k ≤ δ3k , the constant
ρ < 1 is ensured if

√
5 + 1

2
(t + 1)δ3k

√
1 + δ3k

1 − δ3k
< 1. (19)

Squaring both sides of (19) and rearranging terms yield

g(δ3k) := (t + 1)2δ33k + (t + 1)2δ23k + 2

3 + √
5
δ3k − 2

3 + √
5

< 0.

The gradient of g with respect to δ3k is given as

∇g(δ3k) = 3(t + 1)2δ23k + 2(t + 1)2δ3k + 2

3 + √
5

> 0.
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Thus the function g is strictly and monotonically increasing over the interval δ3k ∈ (0, 1].
Note that

g(0) = − 2

3 + √
5

< 0 and g(1) = 2(t + 1)2 > 0.

Thus there exists a unique real root α∗ for the equation g(α∗) = 0 in [0, 1]. Therefore,
δ3k < α∗ ensures that the constant ρ < 1 in (18), and hence it follows from (18) that

∥
∥x p+1 − x∗∥∥

2 ≤ ρ p
∥
∥x0 − x∗∥∥

2 + τ

1 − ρ
‖η‖2,

which is exactly the desired error bound. In particular, when η = 0, it follows immediately
from the above error bound that the sequence {x p} generated by PGOT converges to x∗ as
p → ∞. ��
A more explicitly given RIC bound than (8) for PGOT can be derived as follows. Since√

1+δ3k
1−δ3k

<
1+δ3k
1−δ3k

, the inequality (19) is guaranteed provided the following inequality is
satisfied:

√
5 + 1

2

(⌈q
k

⌉
+ 1

)
δ3k

1 + δ3k

1 − δ3k
< 1,

which can be written as

φδ23k + (φ + 1) δ3k − 1 < 0, (20)

where

φ =
√
5 + 1

2

(⌈q
k

⌉
+ 1

)
.

To guarantee (20), it is sufficient to require that

δ3k <
−(φ + 1) + √

φ2 + 6φ + 1

2φ
= 2

√
φ2 + 6φ + 1 + φ + 1

.

The right-hand side above is the positive root in [0, 1] of the quadratic equation φδ23k +
(φ + 1) δ3k − 1 = 0. From the above analysis, we immediately obtain the following result.

Corollary 1 Let x∗ ∈ R
n be the solution of the problem (7) and η := y − Ax∗. Let q ≥ 2k

be a positive integer number. Suppose the restricted isometry constant of A satisfy

δ3k <
2

√
φ2 + 6φ + 1 + φ + 1

, (21)

where

φ =
√
5 + 1

2

(⌈q
k

⌉
+ 1

)
.

Then the sequence {x p} generated by PGOT satisfies that

∥∥x p+1 − x∗∥∥
2 ≤ ρ p

∥∥x0 − x∗∥∥
2 + τ

1 − ρ
‖η‖2,

where ρ < 1 and τ are given by (10) and (11), respectively.
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The bound (21) depends only on the given integer number q . It is easy to verify that, for
instance, δ3k < 0.1517 when q = 2k, δ3k < 0.1211 when 2k < q ≤ 3k, and δ3k < 0.1009
when 3k < q ≤ 4k.

Theorem 1 demonstrates how far the iterate point x p+1 generated by PGOT is from the
solution x∗ of the problem (7). It shows that the bound of ‖x p+1− x∗‖2 depends on the value
‖η‖2 = ‖y− Ax∗‖2. It is worth mentioning that the sparse optimization problems are a large
class of problems arising frommany different applications, such as statistical regression, data
sparse representation, data compression, channel estimation in wireless communication. The
main results established in this section are general enough to apply to these broad situations.
For instance, in sparse signal recovery, y := Ax∗ + η are the linear measurements of the
signal x∗. In this case, ‖η‖2 = ‖y − Ax∗‖2 is the size of measurement error which would be
small. In particular, η = 0 when measurements are accurate. For such a specific application,
our main results can be further enhanced. See the discussion below in more detail.

3.1.1 Application to sparse signal recovery

Let x∗ be a k-sparse signal to recover. To recover x∗, we take the signal measurements
y := Ax∗ + η with a measurement matrix A, where η = y − Ax∗ denotes the measurement
error which is small. Recovering x∗ from the measurements y can be exactly modeled as
the optimization problem (7). From the results in Sect. 3.1, we immediately obtain the next
result concerning sparse signal recovery.

Theorem 2 Let y := Ax∗ + η be the measurements of the k-sparse signal x∗ ∈ R
n with

measurement error η. Let q ≥ 2k be a positive integer number. Suppose the restricted
isometry constant of measurement matrix A satisfies one of the following conditions:

(i) δ3k < α∗, where α∗ ∈ (0, 1) is the unique real root of (9),
(ii) δ3k satisfies (21).

Then the sequence generated by PGOT satisfies
∥∥x p+1 − x∗∥∥

2 ≤ ρ p
∥∥x0 − x∗∥∥

2 + τ

1 − ρ
‖η‖2 , (22)

where ρ and τ are the same as (10) and (11), respectively. In particular, if the measurements
are accurate, i.e., y = Ax∗, then the sequence {x p}generated by PGOT converges to x∗.

From (22), we see that when the measurements are accurate enough, i.e., ‖η‖2 is sufficient
small, then x p+1 ≈ x∗. This means the x p+1 is a high-quality reconstruction of x∗.

3.2 Main results for PGROT

Before analyzing the PGROT, we introduce the following lemma.

Lemma 4 [38] Let x∗ ∈ R
n be the solution to the problem (7) and η = y − Ax∗ be the

error. Denote S = supp(x∗) and S p+1 = supp(x p+1). Let u p and w p be the vector defined
as in PGROT, and w∗ ∈ {0, 1}n be a binary k-sparse vector such that S ⊆ supp(w∗). Then

∥∥(
x∗ − u p ⊗ w p)

S∪S p+1

∥∥
2

≤
√

1 + δk

1 − δ2k

∥∥(
x∗ − u p) ⊗ w∗∥∥

2 + 2√
1 − δ2k

‖η‖2

+ 2

√
1 + δk

1 − δ2k

∥∥Hk
(
u p − x∗)∥∥

2 .
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Theorem 3 Let x∗ ∈ R
n be the solution to the problem (7) and η = y − Ax∗. Let q ≥ 2k be

a positive integer number. Suppose the restricted isometry constant of matrix A satisfies

δ3k < β∗, (23)

where β∗ is the unique real root of the equation

9
(⌈q

k

⌉
+ 1

)2
β3 + 9

(⌈q
k

⌉
+ 1

)2
β2 + 2

7 + 3
√
5
β − 2

7 + 3
√
5

= 0 (24)

in (0, 1). Then the sequence {x p} generated by PGROT satisfies

∥
∥x p+1 − x∗∥∥

2 ≤ ρ p
∥
∥x0 − x∗∥∥

2 + τ

1 − ρ
‖η‖2,

where

ρ = 3

(√
5 + 1

2

)2 (⌈q
k

⌉
+ 1

)
δ3k

√
1 + δk

1 − δ2k
< 1 (25)

is ensured under (23), and the constant τ is given as

τ =
(√

5 + 1

2

)2
3

(⌈ q
k

⌉ + 1
)
(1 + δk)√

1 − δ2k
+

√
5 + 1√
1 − δ2k

. (26)

In particular, if η = 0, then the sequence {x p} generated by PGROT converges to x∗.

Proof Let x p+1, u p and w p be defined in PGROT. Denote by S = supp(x∗). Note that
S p+1 = supp(x p+1) = supp(Hk(w

p ⊗ u p)). By Lemma 3, we have

∥∥x∗ − x p+1
∥∥
2 = ∥∥x∗ − Hk

(
w p ⊗ u p)∥∥

2 ≤
√
5 + 1

2

∥∥(x∗ − wp ⊗ up)S∪Sp+1

∥∥
2 . (27)

Note that w∗ is a k-sparse binary vector satisfying supp(x∗) ⊆ supp(w∗). By Lemma 4, we
obtain

∥∥(
x∗ − u p ⊗ w p)

S∪S p+1

∥∥
2

≤
√

1 + δk

1 − δ2k

(∥∥(
x∗ − u p) ⊗ w∗∥∥

2 + 2
∥∥Hk

(
u p − x∗)∥∥

2

) + 2√
1 − δ2k

‖η‖2

≤ 3

√
1 + δk

1 − δ2k
‖‖ x∗ − u p

2 + 2√
1 − δ2k

‖η‖2 , (28)

where the last inequality follows from
∥∥(
x∗ − u p) ⊗ w∗∥∥

2 ≤ ∥∥Hk
(
u p − x∗)∥∥

2 ≤ ∥∥x∗ − u p
∥∥
2 .

Based on (17), we have

∥∥x∗ − u p
∥∥
2 ≤

√
5 + 1

2
(t + 1)δ3k

∥∥x∗ − x p
∥∥
2 +

√
5 + 1

2
(t + 1)

√
1 + δk ‖η‖2 , (29)

where t = ⌈ q
k

⌉
. Combining (27)–(29) yields

∥∥x∗ − x p+1
∥∥
2 ≤ ρ

∥∥x∗ − x p
∥∥
2 + τ ‖η‖2 (30)
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where ρ and τ are given by (25) and (26), respectively.We now prove that (23) implies ρ < 1.
Due to the fact δk ≤ δ2k ≤ δ3k , to guarantee that ρ < 1, it is sufficient to require

3

(√
5 + 1

2

)2

(t + 1)δ3k

√
1 + δ3k

1 − δ3k
< 1, (31)

which, by squaring both sides and rearranging terms, is equivalent to g(δ3k) < 0 where

g (δ3k) = 9(t + 1)2δ33k + 9(t + 1)2δ23k + 2

7 + 3
√
5
δ3k − 2

7 + 3
√
5
.

The gradient of g(δ3k) is given as

∇g (δ3k) = 27(t + 1)2δ23k + 18(t + 1)2δ3k + 2

7 + 3
√
5
,

which is positive over the interval [0, 1]. This together with

g(0) = − 2

7 + 3
√
5

< 0, g(1) = 18(t + 1)2 > 0,

implies that there exists a unique real positive root β∗ ∈ (0, 1) satisfying g(β∗) = 0.
Therefore, the condition δ3k < β∗ guarantees the inequality (31), and thus ensures that
ρ < 1. Thus it follows from (30) that

∥∥x p+1 − x∗∥∥
2 ≤ ρ p

∥∥x0 − x∗∥∥
2 + τ

1 − ρ
‖η‖2.

When η = 0, the relation above implies that
∥∥x∗ − x p+1

∥∥
2 ≤ ρ p

∥∥x∗ − x0
∥∥
2 → 0 as

p → ∞. Therefore, the sequence {x p} generated by RPGOT in this case converges to the
solution x∗ of (7). ��

Similar to the discussion in the end of Sect. 3.1, an explicit bound of δ3k for PGROT can

be given. Since
√

1+δ3k
1−δ3k

<
1+δ3k
1−δ3k

, a sufficient condition for (31) is

3

(√
5 + 1

2

)2 (⌈q
k

⌉
+ 1

)
δ3k

1 + δ3k

1 − δ3k
< 1,

which is equivalent to

ψδ23k + (ψ + 1)δ3k − 1 < 0,

where

ψ = 3

(√
5 + 1

2

)2 (⌈q
k

⌉
+ 1

)
.

By the same analysis in Sect. 3.1, we immediately have the next corollary.

Corollary 2 Let x∗ ∈ R
n be the solution to the problem (7) and η := y − Ax∗. Let q ≥ 2k

be a positive integer number. Suppose the restricted isometry constant of matrix A satisfies

δ3k <
2

√
ψ2 + 6ψ + 1 + ψ + 1

,
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where

ψ = 3

(√
5 + 1

2

)2 (⌈q
k

⌉
+ 1

)
.

Then the sequence {x p} generated by PGROT satisfies

∥
∥x p+1 − x∗∥∥

2 ≤ (ρ)p
∥
∥x0 − x∗∥∥

2 + τ

1 − ρ
‖η‖2,

where ρ and τ are given as (25) and (26), respectively.

Similar to Corollary 1, we may apply the above result (Theorem 3 and Corollary 2) to the
scenario of sparse signal recovery via compressed sensing for which η = y − Ax∗ is very
small, and thus x p ≈ x∗ when p is large enough. That is, the iterate x p generated by PGROT
is a quality approximation to the signal.

3.3 Main result for PGROTP

The error bound for the solution of (7) via PGROTP algorithm can be also established. The
next lemma concerning a property of pursuit step is useful in this analysis.

Lemma 5 [38] Let x∗ ∈ R
n be the solution to the problem (7) and η = y − Ax∗. The vector

u ∈ R
n is an arbitrary k-sparse vector. Then the optimal solution of the pursuit step

z∗ = argmin
z

{‖y − Az‖22 : supp(z) ⊆ supp(u)
}

satisfies that

∥∥z∗ − x∗∥∥
2 ≤ 1

√
1 − (δ2k)

2
‖x∗ − u‖2 +

√
1 + δk

1 − δ2k
‖η‖2.

The main result for PGROTP algorithm is given as follows.

Theorem 4 Let x∗ ∈ R
n be the solution to the problem (7) and η = y − Ax∗. Let q ≥ 2k be

a positive integer number. Suppose the restricted isometry constant of matrix A satisfies

δ3k <
1

3
(√

5+1
2

)2 (⌈ q
k

⌉ + 1
) + 1

. (32)

Then the sequence {x p} generated by PGROTP satisfies

∥∥x p+1 − x∗∥∥
2 ≤ (ρ∗)p

∥∥x0 − x∗∥∥
2 + τ ∗

1 − ρ∗ ‖η‖2, (33)

where

ρ∗ =
(√

5 + 1

2

)2
3

(⌈ q
k

⌉ + 1
)
δ3k

1 − δ3k
< 1 (34)

is guaranteed by (32), and the constant τ ∗ is given as

τ ∗ =
3

(√
5+1
2

)2 (⌈ q
k

⌉ + 1
)
(1 + δk) + √

5 + 1

(1 − δ2k)
√
1 + δ2k

+
√
1 + δk

1 − δ2k
. (35)

In particular, when η = 0, the sequence {x p} generated by PGROTP converges to x∗.
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Table 1 The upper bounds of δ3k
for several different q

The value of q PGOT RPGOT RPGOTP

q = 2k δ3k < 0.1729 δ3k < 0.0407 δ3k < 0.0407

2k < q ≤ 3k δ3k < 0.1348 δ3k < 0.0308 δ3k < 0.0308

3k < q ≤ 4k δ3k < 0.1106 δ3k < 0.0248 δ3k < 0.0248

Proof The PGROTP can be regarded as a combination of PGROTwith a pursuit step. Denote
x p+1 as the intermediate vector generated by PGROT. Based on the analysis of PGROT
algorithm, we have

‖x p+1 − x∗‖2 ≤ ρ
∥
∥x∗ − x p

∥
∥
2 + τ ‖η‖2 ,

where ρ and τ are the same as (25) and (26), respectively. By Lemma 5, we immediately
have that

∥
∥x∗ − x p+1

∥
∥
2 ≤ 1

√
1 − (δ2k)

2

∥
∥x p+1 − x∗∥∥

2 +
√
1 + δk

1 − δ2k
‖η‖2 .

As δk ≤ δ2k ≤ δ3k , combining two inequalities above yields
∥∥x∗ − x p+1

∥∥
2 ≤ ρ∗ ∥∥x∗ − x p

∥∥
2 + τ ∗ ‖η‖2 ,

where ρ∗ and τ ∗ are given in (34) and (35), respectively. To guarantee ρ∗ < 1, i.e.,
(√

5 + 1

2

)2
3

(⌈ q
k

⌉ + 1
)
δ3k

1 − δ3k
< 1,

it is sufficient to require that

δ3k <
1

3
(√

5+1
2

)2 (⌈ q
k

⌉ + 1
) + 1

,

which is exactly the assumption (33) of the theorem.
If η = 0, the sequence {x p} generated by PGROTP converges to x∗ as p → ∞, since in

this case, (33) is reduced to
∥∥x p+1 − x∗∥∥

2 ≤ (ρ∗)p
∥∥x0 − x∗∥∥

2. ��
For sparse signal recovery, similar comments to that of Sect. 3.1.1 can bemade to PGROTP.

The discussion is omitted here. Before we close this section, we list a few RIC conditions in
terms of δ3k for the proposed algorithms with different q , i.e., q = 2k, 3k, 4k. The results
shown in Table 1 are derived based on (9), (24) and (32) for the q given as above, respectively.
It isworthmentioning that, whenq = n, the partial gradientHq(∇ f (x)) becomes the full gra-
dient∇ f (x), and the algorithms in this paper are reduced to the optimal k-thresholding (OT),
relaxed optimal k-thresholding (ROT) and relaxed optimal k-thresholding pursuit (ROTP)
algorithm, respectively. The sufficient conditions for the convergence of these algorithms
were studied in [38, 42].

Remark 1 The iterative complexity of the interior point method for ROTP is about
O

(
pm3 + pmn + pn3.5L

)
, as pointed out in [42], where p is the number of iterations and L

is the size of the problem data encoding in binary. Solving quadratic optimization is the main
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(a) (b)

Fig. 1 Objective change in the course of iterations for PGROTP with different q, i.e., q = k, 2k, 3k, n

cost for the ROTP algorithm. The algorithms proposed in this paper possess similar a com-
putational complexity. To improve the chance for the solution of (ROT) to be binary or nearly
binary, two or more relaxed optimal k-thresholding steps are employed by the algorithms in
[38]. The partial-gradient-based algorithm in this paper is quite different from the strategy
in [38]. The iterate generated by partial gradient methods is at most (k + q)-sparse, based on
which the vector derived from the relaxed k-optimal thresholding is more compressible than
the one generated by those algorithms in [38].

4 Numerical experiments

Simulations via synthetic data are carried out to demonstrate the numerical performance of
the PGROTP which is the main implementable algorithm proposed in this paper. We test
the algorithm from four aspects: objective reduction, average number of iterations required
for solving the problem (7), success frequency in vector reconstruction and phase transition
in terms of success rate. The PGROTP with q = k, 2k, 3k and n are tested and compared.
Unless otherwise stated, themeasurement matrices used in experiments are Gaussian random
matrices whose entries follow the standard normal distribution N (0, 1). For sparse vectors,
their entries also follow theN (0, 1) and the position of nonzero entries of the vector follows
the uniform distribution. All involved convex optimization problems were solved by CVX
developed by Grant and Boyd [25] with solver ’Mosek’ [1].

4.1 Objective reduction

This experiment is used to investigate the objective-reduction performance of the PGROTP
with different q , including q = k, 2k, 3k and n. We set A ∈ R

500×1000 and y = Ax∗,
where x∗ is a generated k-sparse vector. Thus x∗ is a global solution of the problem (7).
Figure 1 records the changes of the objective value ‖y − Ax‖2 in the course of algorithm
up to 70 iterations. Figure 1a, b include the results for the sparsity level ‖x∗‖0 = 162 and
197, respectively. It can be seen that PGROTP is able to reduce the objective value during
iterations. Moreover, this experiment also indicates that the optimal k-thresholding methods
with partial gradients may perform better in objective reduction than the ones using full
gradients in many situations.
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(a) (b)

(c) (d)

Fig. 2 Comparison of the average number of iterations required by PGROTP with different q

4.2 Number of iterations

Experiments were also performed to demonstrate the average number of iterations needed for
PGROTP to solve the sparse optimization problems from the sparse vector reconstruction.
The vector dimension is fixed to be 1000, and the size of the measurement matrix is m ×
1000, where m takes the following a few different values: m = 300, 400, 500, 600. The
measurements y = Ax∗ are accurate, where x∗ is the sparse vector to recover. In this
experiment, if the iterate x p satisfies the criterion

‖x − x∗‖2/‖x∗‖2 ≤ 10−3, (36)

then the algorithm terminates and the number of iterations p is recorded. If the algorithm
within 50 iterations cannot meet the criterion (36), then the algorithm stops, and the number
of iterations performed is recorded as 50. For each given sparsity level, the average number of
iterations is obtained by attempting 50 trials. The outcomes are shown in Fig. 2which indicate
that the required iterations of PGROTP for vector reconstructions are usually low when the
sparsity level of x∗ is low, and that the number of iterations required for solving the problem
increases as the sparsity level increases. This figure also shows that for a given sparsity level,
the more measurements are required, the lower the average number of iterations are needed
by the PGROTP to meet the reconstruction criterion (36).
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(a) (b)

Fig. 3 Comparisons of success rates of sparse signal reconstruction between several algorithms via Gaussian
random matrices

4.3 Sparse signal recovery

Simulations were also carried out to compare the success rates of the PGROTP algorithm
in sparse vector reconstruction with several existing algorithms, such as �1-minimization,
subspace pursuit (SP), orthogonal matching pursuit (OMP) and ROTP2 (in [38, 42]). The size
of themeasurementmatrix is still 500 × 1000. For every given ratio of the sparsity level k and
n, the success rate of the algorithm is obtained by 50 random attempts. In this experiment, SP,
ROTP2 and PGROTP(q = k) perform a total of 50 iterations, whereas OMP is performed
k iterations. After performing the required number of iterations, the algorithm is counted
as success if the condition (36) is satisfied. The success rates for accurate and inaccurate
measurements are summarized in Fig. 3a, b, respectively. The inaccurate measurements are
given by y = Ax∗ + 0.001η, where η is a standard Gaussian vector. Compared with several
existing algorithms, it can be seen that the PGROTP is robust and efficient for the sparse
vector reconstruction in both noise and noiseless environments.

4.4 Phase transition

Phase transition analysis was introduced by Donoho and Tanner [19]. Blanchard and Tanner
[2] and Blanchard, Tanner and Wei [3] provided substantial analyses and experiments to
compare the phase transition features of several compressed sensing algorithms. We also
conducted such experiments to demonstrate the phase transition of PGROTP(q = k) and
compare with �1-minimization, SP and ROTP2 algorithms.

In this experiment, the length of the target vector x∗ is fixed as n = 2048. We take
40 different sparsity levels uniformly from 1 to m, i.e., k = ⌊ 1

40m
⌋

, . . . ,
⌊ 39
40m

⌋
,m. For

the number of measurements m, we require m ≥ 40 to ensure that there are 40 different
sparsity levels. We take a total of 20 different values for the measurements, 10 uniformly
from [40, 0.4n] and 10 from (0.4n, n]. The matrix A is a Gaussian random matrix whose
entries follow the normal distribution N (0, 1/

√
m). The measurements of x∗ are inexact,

i.e., y = Ax∗ + 10−5η, where η is a standard Gaussian vector. The iterative algorithms
terminate either when the criterion (36) is met, or the maximum of 30 iterations are reached.
The algorithm is counted as success when (36) is satisfied. For each pair of (m, k), we use 10
trials to calculate the success rate and the average time consumption for success recoveries.
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(a) (b)

Fig. 4 Phase transition of PGROTP with respect to success rate and CPU time under inexact measurements

(a) (b)

Fig. 5 Comparison of phase transition curves of �1-minimization, SP, PGROTP and ROTP2 algorithms under
inexact measurements in terms of success rates

In Figs. 4, 5, 6, the vertical axis represents over-sampling rate ρ = k/m, while the horizontal
axis represents under-sampling rate δ = m/n. The range of both ρ and δ is between 0 and 1.

Figure 4 demonstrates the phase transition regions of PGROTP in terms of success rates
and CPU time for recovery success, respectively. The shaded area in Fig. 4a indicates the
region for the recovery success of the algorithm. We can see from Fig. 4a that PGROTP has
ability to recover the signal with relatively high δ and ρ. Figure 4b shows that PGROTP
takes more time to achieve recovery success when more measurements are used and when
the signal is relatively dense.

We now compare the phase transition curves between �1-minimization, SP, PGROTP and
ROTP2 algorithms. We carry out the experiment in the same environment as that of Fig. 4.
For every given δ, the logistic regression model is used to determine the specific success
rate corresponding to ρ. The phase transition curves can be obtained in terms of different
level of success rates. Figure 5a, b demonstrate the curves for the success rates 0.9 and 0.5,
respectively. Such curves delineate the regions where the algorithms can recover the target
signal with a specific success rate and the region in which they cannot. In general, the higher
the curve, the better the performance of the algorithm. Figure 5 indicates that PGROTP
performs comparably to the other three algorithms. We also see that although PGROTP
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Fig. 6 Time consumption ratio of PGROTP and ROTP2

adopts a partial gradient direction, it maintains a similar performance to ROTP2 in sparse
signal recovery.

Finally, we compare the performance of PGROTP and ROTP2 via time consumption ratio.
Figure 6 shows the time ratios r = time(ROTP2(δ,ρ))

time(PGROTP(δ,ρ))
over the phase transition region. The

difference in time consumption between the two algorithms is more pronounced when more
measurements are used to recover a sparse signal. Figure 6 clearly shows that when dealing
with signalswith low sparsity levels, the PGROTPalgorithmcan recoverwide range of signals
with less time than ROTP2. This does show that using the partial gradient information may
help reduce the runtime of the optimal k-thresholding method.

5 Conclusions and final remarks

Motivated by the recent optimal k-thresholding technique, we proposed the partial-gradient-
based optimal k-thresholding methods for solving a class of sparse optimization problems.
Under the restricted isometry property, we established a global error bound for the iterates
produced by our algorithms. For sparse signal recovery, our results claim that the proposed
algorithms with q satisfying 2k ≤ q < n are guaranteed to recover the sparse vector. The
optimal-thresholding-type algorithms usually require more time to solve the sparse optimiza-
tion problem than traditional hard thresholding methods and existing heuristic algorithms.
The primary computation time is solving quadratic optimization problems. However, the
advantage of optimal-thresholding-type algorithms is that they are more stable, robust and
have stronger reconstruction capability than existing heuristic methods. Although we focus
on solving the specific model (7) in this paper, it is not difficult to extend the framework of
the proposed algorithms to the general model (1). We leave this as future work.
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