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Abstract. A class of splitting alternating algorithms is proposed for finding the sparse solution
of linear systems with concatenated orthogonal matrices. Depending on the number of matrices con-
catenated, the proposed algorithms are classified into the two-block splitting alternating algorithm
(TSAA) and the multiblock splitting alternating algorithm (MSAA). These algorithms aim to de-
compose a large-scale linear system into two or more coupled subsystems, each significantly smaller
than the original system, and then combine the solutions of these subsystems to produce the sparse
solution of the original system. The proposed algorithms only involve matrix-vector products and
reduced orthogonal projections. It turns out that the proposed algorithms are globally convergent
to the sparse solution of a linear system if the matrix (along with the sparsity level of the solution)
satisfies a coherence-type condition. Numerical experiments indicate that the proposed algorithms
are very promising and can quickly and accurately locate the sparse solution of a linear system with
significantly fewer iterations than several mainstream iterative methods.
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1. Introduction. The sparse solution of an underdetermined linear system has
gained significant interest in the field of science and engineering [6, 17, 21, 50, 1, 32].
Many practical problems can be formulated as finding the sparse solution to a linear
system, which commonly arises in compressive sampling [7, 13], signal and image
reconstruction [17, 35, 34, 1], linear inverse problem [3, 42, 45, 43], model selection
[28, 24], and wireless network [11, 33]. The fundamental model for the sparse solution
of a linear system can be cast as

min\{ \| x\| 0 : y=Ax\} ,(1.1)

where y \in \BbbR m is a given vector, A is a given m \times n matrix with m \ll n, and \| x\| 0
counts the number of nonzero entries of x \in \BbbR n. The data pair (y,A) may have dif-
ferent interpretations depending on application context. For instance, in compressive
sampling [7, 13], A is referred to as the measurement matrix and the entries of y
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SPLITTING ALTERNATING ALGORITHMS 2311

are the acquired measurements of the signal; in wireless communication [11, 33], A
is called the channel-gain matrix, and the entries of y are the received signals at the
terminals. Before proceeding, let us review some existing algorithms developed over
the past decades for solving (1.1).

(i) Convex optimization methods. Problem (1.1) can often be well approximated
by the \ell 1-minimization model min\{ \| x\| 1 : y = Ax\} which is a convex optimization
model (see, e.g., [10, 8]). The Lasso model min\{ \| y  - Ax\| 22 + \lambda \| x\| 1\} , where \lambda is a
positive parameter, is also a popular convex approximation of (1.1) [5, 2, 28]. Re-
placing \| x\| 0 in (1.1) with a nonconvex `merit function for sparsity' and employing a
linearization technique, one can develop the reweighted \ell 1-minimization methods for
this problem [9, 52, 50]. Additionally, the so-called dual-density-based approach in
[54, 50] is also a convex optimization method for this problem. Convex optimization
problems are typically solved using interior-point methods which are efficient for rea-
sonably sized problems but have a significantly higher computational cost compared
to the next two classes of methods.

(ii) OMP-type methods. The orthogonal matching pursuit (OMP) was introduced
in the statistics literature several decades ago and later extended to signal processing
[40, 36, 47, 17]. Although OMP performs well for (1.1) in many cases, it is relatively
slow in locating the high-sparsity-level solution of large-scale problems. This is be-
cause the total number of iterations required by OMP is at least equal to the number
of nonzero entries in the solution. This issue also affects the variants of OMP, includ-
ing the stagewise orthogonal matching pursuit [15] and weak orthogonal matching
pursuit [46].

(iii) Thresholding-type methods. The iterative hard thresholding (IHT) [4] and
hard thresholding pursuit (HTP) [20] are also popular methods for solving (1.1).
Combining matching pursuit [36] with hard thresholding gives rise to the compres-
sive sampling matching pursuit (CoSaMP) [39] and subspace pursuit (SP) [12]. Soft-
thresholding methods, including the iterative shrinkage-thresholding algorithms
(ISTA) and fast iterative shrinkage-thresholding algorithm (FISTA) [3], are also widely
used for finding sparse solutions of linear systems. However, it is known that IHT,
ISTA, and FISTA converge slowly and that their performance is sensitive to the choice
of parameters such as stepsize or soft-thresholding parameter. Recent developments
in thresholding-type methods can be found in [44, 22, 51, 37, 27, 45, 29, 31, 16].

Problem (1.1) is NP-hard [38], and developing an efficient general-purpose algo-
rithm for it is challenging. The aim of this paper is to develop an efficient, customized
algorithm for a class of structured large-scale problems involving matrices that are
concatenations of orthogonal matrices:

A= [\Phi 1,\Phi 2, \cdot \cdot \cdot ,\Phi p],(1.2)

where \Phi i, i= 1, . . . , p are m\times m orthogonal matrices. Such matrices have long been
used as measurement matrices in signal and image recovery [14, 18, 17, 19, 26], and
they appear in applications like distributed compressed sensing and distributed sensor
networks [30, 41, 48]. Concatenated orthogonal matrices have both theoretical and
practical advantages due to their reduced coherence, which is crucial for robust signal
recovery [17, 26, 30]. However, the existing methods such as \ell 1-minimization, OMP,
and thresholding methods use the matrix as a whole, failing to exploit its internal
structure. Compressive sampling theory [8, 17, 21] indicates that the performance
of a signal-reconstruction algorithm is closely tied to the structure of the measure-
ment matrix and its properties such as reduced coherence [17], restricted isometry
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2312 YUN-BIN ZHAO AND ZHONG-FENG SUN

property [8], null space property [21], and range space property [50]. Both simula-
tions and practical applications demonstrate that the matrix structure significantly
impacts the performance of signal processing algorithms. Therefore, it is essential to
develop an algorithm that fully leverages the matrix structure while maintaining low
computational cost for solving large-scale problems.

In this paper, we develop the splitting alternating algorithms (SAA) for finding
sparse solutions to large-scale linear systems with concatenated orthogonal matrices.
When two matrices are concatenated, the algorithm is called the two-block splitting
alternating algorithm (TSAA); for more than two matrices, it is referred to as the
multiblock splitting alternating algorithm (MSAA). Our algorithms aim to solve the
problem at a low computational cost by fully utilizing the matrix structure in (1.2).
Starting from an initial partition of y, say y = y1 + \cdot \cdot \cdot + yp, we split the original
large-scale linear system into p coupled subsystems yi =\Phi ixi, i= 1, . . . , p, solve these
subsystems, and update the current partition of y alternately. The idea of alternating
iteration has been widely used in the alternating direction method of multipliers
(ADMM) and distributed optimization approaches [5, 23, 55, 49]. SAA can also
be viewed as a decomposition method for large-scale sparse optimization problems.
We prove that the proposed algorithms globally converge to the sparsest solution of
a linear system if the mutual coherence of the matrix and the sparsity level of the
solution jointly meet a certain condition. Numerical results indicate that the proposed
algorithms can often solve a wide range of problems (1.1) with just a few iterations.
Moreover, the overall performance (success rate, convergence speed, and robustness
in signal and image reconstruction) of the proposed algorithms is superior to many
existing methods.

The paper is organized as follows. Section 2 describes the two-block splitting
alternating algorithm, and its global convergence is shown in section 3. The multiblock
algorithm is presented in section 4, and its global convergence is shown in section 5.
Finally, numerical results are given in section 6.

2. Two-block splitting alternating algorithms. In this section, we describe
the algorithm in two-block cases, while the multiple-block cases will be studied in
later sections. Let us first introduce some notations.

2.1. Notation. For u, v \in \BbbR m, we simply write the vector x = [uv ] \in \BbbR 2m as
x = (u, v) when no ambiguity arises. x \in \BbbR n is said to be K-sparse if it has at
most K nonzero entries. We denote the support of x by supp(x) = \{ i : xi \not = 0\} .
Given S \subseteq \{ 1, . . . , n\} , the cardinality and complement set of S are denoted by | S| and
S = \{ 1, . . . , n\} \setminus S, respectively. The vector xS is obtained from x \in \BbbR n by retaining
the entries indexed by S and zeroing out (or simply removing) those entries indexed
by S. By zeroing out entries, xS remains n-dimensional, while by removing entries,
xS \in \BbbR | S| . The dimension of xS is clear from the content. Sorting the absolute values
of the entries of x \in \BbbR n in descending order | xi1 | \geq | xi2 | \geq \cdot \cdot \cdot \geq | xin | , we denote the
index set of the K largest absolute entries of x by \scrL K(x) = \{ i1, i2, . . . , iK\} . When two
indices are tied, choose the smaller one. The hard thresholding operator\scrH K(x) retains
the K largest entries in magnitude and zeroes out other entries, so \scrH K(x) = xS with
S =\scrL K(x). Given S \subseteq \{ 1, . . . , n\} and a matrix A= [a1, . . . , an]\in \BbbR m\times n with columns
ai, we denote by AS the submatrix of A consisting of the columns indexed by S. We

denote the mutual coherence of A by \mu (A) =maxi \not =j
| aT

i aj | 
\| ai\| 2\| aj\| 2

, which represents the
largest absolute inner product between the normalized columns of A.
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SPLITTING ALTERNATING ALGORITHMS 2313

2.2. Algorithm description. Consider the matrix A= [\Phi a,\Phi b], where \Phi a,\Phi b \in 
\BbbR m\times m are orthogonal. Suppose that x\ast = (x\ast 

a, x
\ast 
b) \in \BbbR 2m is the K-sparse solution to

the system y = Ax, where x\ast 
a, x

\ast 
b \in \BbbR m. Then y can be written as y = y\ast a + y\ast b with

y\ast a = \Phi ax
\ast 
a and y\ast b = \Phi bx

\ast 
b . Such a partition of y, determined by x\ast , is referred to as

the optimal partition of y. To find the solution x\ast , it is sufficient to find the optimal
partition (y\ast a, y

\ast 
b ) of y. This motivates one to develop a method that can iteratively

search for the optimal partition of y. Let (x
(k)
a , x

(k)
b ) be the current iterate which is

K-sparse. We adopt the following alternating search and partition strategy of y to
generate certain intermediate points leading to the next iterate:

(i) Fix x
(k)
b and update x

(k)
a . Set y

(k)
b \leftarrow \Phi bx

(k)
b and uk

a \leftarrow y  - y
(k)
b (so y =

u
(k)
a +y

(k)
b ). Solve the system u

(k)
a =\Phi axa to get xa =\Phi T

a u
(k)
a . Performing thresholding

yields \widetilde x(k)
a =\scrH K(xa) =\scrH K(\Phi T

a u
(k)
a ) by which x

(k)
a can be updated.

(ii) Fix \widetilde x(k)
a and update x

(k)
b . Set \widetilde y(k)a \leftarrow \Phi a\widetilde x(k)

a and u
(k)
b \leftarrow y  - \widetilde y(k)a (so y =

u
(k)
b +\widetilde y(k)a ). Solve the system u

(k)
b =\Phi bxb to get xb =\Phi T

b u
(k)
b . Performing thresholding

yields \widetilde x(k)
b =\scrH K(xb) =\scrH K(\Phi T

b u
k
b ) by which x

(k)
b can be updated

We now formally state the algorithm which is referred to as the two-block splitting
alternating algorithm (TSAA).

TSAA: Input vector y \in \BbbR m, sparsity level K, matrix A= [\Phi a,\Phi b]\in \BbbR m\times 2m with
\Phi a,\Phi b \in \BbbR m\times m being orthogonal, and integer number \tau such that K \leq \tau \leq 2K.

S1 (Initialize) Give any initial point x(0) = (x
(0)
a , x

(0)
b ) \in \BbbR 2m and any initial

vectors y
(0)
b in \BbbR m. Set k := 0 (initial count number of iteration).

S2 At the current iterate x(k) together with y
(k)
b , set

u(k)
a = y - y

(k)
b , \widetilde x(k)

a =\scrH K(\Phi T
a u

(k)
a ), u

(k)
b = y - \Phi a\widetilde x(k)

a , \widetilde x(k)
b =\scrH K(\Phi T

b u
(k)
b ).

S3 Let \widetilde x(k) = (\widetilde x(k)
a , \widetilde x(k)

b ) and d(k) = AT (y  - Ax(k)). Set \Lambda (k) = \scrL \tau (\widetilde x(k)) \cup 
\scrL 2K - \tau (d

(k)) and

\widehat x(k) = argmin
x\in \BbbR 2m

\{ \| y - Ax\| 2 : supp(x)\subseteq \Lambda (k)\} .(2.1)

S4 Set S(k) =\scrL K(\widehat x(k)) and

(x(k+1)
a , x

(k+1)
b ) = x(k+1) := argmin

x\in \BbbR 2m

\{ \| y - Ax\| 2 : supp(x)\subseteq S(k)\} .(2.2)

Set y
(k+1)
b := \Phi bx

(k+1)
b . Replace k+1 by k and repeat S2-S4 until a stopping

criterion is met.

Remark 2.1. (i) To more efficiently chase a sparse point, we incorporate two
shrinkages and orthogonal projections into the procedure as shown in S3 and S4
above. The first shrinkage is relatively loose, aiming primarily to reduce the error
\| y - Ax\| 2, while the second ensures that the iterate is K-sparse. (ii) Various stopping
criteria can be employed in TSAA. For example, the algorithm may terminate when
\| y  - Ax(k)\| 2 \leq \varepsilon , where \varepsilon > 0 is a given tolerance, or after reaching the prescribed
maximum number of iterations. (iii) The computational cost of TSAA is low. Steps
S2 and S3 only involve matrix-vector products, and (2.1) and (2.2) are small least-
squares problems with at most 2K and K variables, respectively.

3. Analysis of TSAA. In this section, we prove that the sequence \{ x(k)\} k\geq 1,
generated by TSAA, converges to the solution of (1.1) under some assumption. Several
useful lemmas are needed for the purpose. The first one below was taken from [53].
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2314 YUN-BIN ZHAO AND ZHONG-FENG SUN

Lemma 3.1 (see [53]). For any vector z \in \BbbR n and any K-sparse vector x \in \BbbR n,

one has \| x - \scrH K(z)\| 2 \leq \omega \| (x - z)S\cup S\ast \| 2, where \omega :=
\surd 
5+1
2 , S = supp(x) and S\ast =

supp(\scrH K(z)).

Lemma 3.2. Let M \in \BbbR \ell 1\times \ell 2 be a matrix with absolute entries | mij | \leq \alpha for some
number \alpha > 0. Then for any u\in \BbbR \ell 2 , one has \| Mu\| 2 \leq \ell 1+\ell 2

2 \alpha \| u\| 2.

Proof. Let m(i) = (mi1, . . . ,mi\ell 2), i= 1, . . . , \ell 1 denote the rows of M. Then

\| Mu\| 22 =
\ell 1\sum 
i=1

(m(i)u)2 \leq 
\ell 1\sum 
i=1

\left(  \ell 2\sum 
j=1

| mij | 2
\right)  \| u\| 22 \leq \ell 1\ell 2\alpha 

2\| u\| 22,

which implies that \| Mu\| 2 \leq 
\surd 
\ell 1\ell 2\alpha \| u\| 2 \leq \ell 1+\ell 2

2 \alpha \| u\| 2.
We now establish the next two lemmas that may be of independent interest.

Lemma 3.3. Let A= [\Phi a,\Phi b], where \Phi a,\Phi b \in \BbbR m\times m are orthogonal matrices. Let
\Lambda \subseteq \{ 1, . . . ,2m\} be an index set with | \Lambda | <m. Then for any u\in \BbbR 2m, one has\bigm\| \bigm\| [(ATA - I)u]\Lambda 

\bigm\| \bigm\| 
2
\leq \mu (A) (| \Lambda | \cdot \| u\Lambda \| 2 +m\| u\Lambda \| 2) ,

where \Lambda = \{ 1, . . . ,2m\} \setminus \Lambda .

Proof. Denoted by M :=ATA - I = [
0 \Phi T

a \Phi b

\Phi T
b \Phi a 0

]. Let \Lambda be the index set given in

the lemma. Still, let m(i) denote the ith row of M and I(i) = supp(m(i)). Note that
every nonzero entry of M is bounded by \mu (A) and that every row of M contains at
most m nonzeros and hence | I(i)| \leq m. For any u\in \BbbR 2m, we have

| m(i)u| = | (m(i))\Lambda u\Lambda + (m(i))\Lambda u\Lambda | = | (m
(i))\Lambda \cap I(i)u\Lambda \cap I(i) + (m(i))\Lambda \cap I(i)u\Lambda \cap I(i) | 

\leq \| (m(i))\Lambda \cap I(i)\| 2\| u\Lambda \cap I(i)\| 2 + \| (m(i))\Lambda \cap I(i)\| 2\| u\Lambda \cap I(i)\| 2.(3.1)

Notice that for any vector v with \ell nonzero entries which are bounded as | vi| \leq \beta ,
one has \| v\| 2 \leq 

\surd 
\ell \beta . Thus \| (m(i))\Lambda \cap I(i)\| 2 \leq 

\sqrt{} 
| \Lambda \cap I(i)| \mu (A) and \| (m(i))\Lambda \cap I(i)\| 2 \leq \sqrt{} 

| \Lambda \cap I(i)| \mu (A).We also note that \| u\Lambda \cap I(i)\| 2 \leq \| u\Lambda \| 2 and \| u\Lambda \cap I(i)\| 2 \leq \| u\Lambda \| 2. There-
fore, it follows from (3.1) that

| m(i)u| \leq \mu (A)

\biggl( \sqrt{} 
| \Lambda \cap I(i)| \| u\Lambda \| 2 +

\sqrt{} 
| \Lambda \cap I(i)| \| u\Lambda \| 2

\biggr) 
.(3.2)

There is an index i\in \Lambda such that | m(i)u| =maxj\in \Lambda | m(j)u| . By using (3.2), we obtain

\| (Mu)\Lambda \| 2 \leq 
\sqrt{} 
| \Lambda | | | m(i)u| \leq \mu (A)

\sqrt{} 
| \Lambda | 

\biggl( \sqrt{} 
| \Lambda \cap I(i)| \| u\Lambda \| 2 +

\sqrt{} 
| \Lambda \cap I(i)| \| u\Lambda \| 2

\biggr) 
\leq \mu (A) (| \Lambda | | u\Lambda \| 2 +m\| u\Lambda \| 2) ,

which follows from | \Lambda \cap I(i)| \leq | \Lambda | and
\sqrt{} 
| \Lambda | 

\sqrt{} 
| \Lambda \cap I(i)| \leq (| \Lambda | + | I(i)| )/2\leq m.

Lemma 3.4. Let A= [\Phi a,\Phi b], where \Phi a,\Phi b \in \BbbR m\times m are two orthogonal matrices.
Let x\ast be the K-sparse solution to the system y = Ax and K < 1/\mu (A). Let \Lambda \subseteq 
\{ 1, . . . ,2m\} be an index set with cardinality K \leq | \Lambda | < 1/\mu (A). Let

z+ = arg min
z\in \BbbR 2m

\{ \| y - Az\| 2 : supp(z)\subseteq \Lambda \} .(3.3)
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SPLITTING ALTERNATING ALGORITHMS 2315

Then

\| z+  - x\ast \| 2 \leq 

\sqrt{} 
1 +

\biggl( 
m\mu (A)

1 - | \Lambda | \mu (A)

\biggr) 2

\| (z+  - x\ast )\Lambda \| 2.(3.4)

where \Lambda = \{ 1, . . . ,2m\} \setminus \Lambda .
Proof. As z+ is the solution to (3.3), at this point the components of the gradient

of \| y - Az\| 22 indexed by \Lambda vanish. Namely, [AT (y - Az+)]\Lambda = 0. Substituting y=Ax\ast 

into this equality leads to [ATA(x\ast  - z+)]\Lambda = 0, and hence  - (z+  - x\ast )\Lambda = [(ATA - 
I)(z+  - x\ast )]\Lambda . Thus, by Lemma 3.3, one has

\| (z+  - x\ast )\Lambda \| = \| [(ATA - I)(z+  - x\ast )]\Lambda \| 2
\leq \mu (A)

\bigl( 
| \Lambda | \| (z+  - x\ast )\Lambda \| 2 +m\| (z+  - x\ast )\Lambda \| 2

\bigr) 
,

which together with \| z+  - x\ast \| 22 = \| (z+  - x\ast )\Lambda \| 22 + \| (z+  - x\ast )\Lambda \| 22 implies (3.4).

The lemma below provides a condition for the uniqueness of solution to (1.1).

Lemma 3.5 (see [17]). If x\ast is a K-sparse solution to the linear system Ax = y
and K < 1

2 (1 +
1

\mu (A) ), then x\ast must be the unique sparsest solution to this system.

We are ready to show that the sequence \{ x(k)\} k\geq 1, generated by TSAA, converges
to the sparsest solution of the linear system under a condition expressed in \mu (A).

Theorem 3.6. Let A = [\Phi a,\Phi b], where \Phi a,\Phi b \in \BbbR m\times m are orthogonal matrices.
Suppose that x\ast = (x\ast 

a, x
\ast 
b) is the K-sparse solution to the system y=Ax and that

K <
1

2\mu (A)
min

\Biggl\{ 
c,
c(1 - c)2

m2

\biggl( 
1

\mu (A)

\biggr) 2
\Biggr\} 
,(3.5)

where c =
\surd 
2

3\omega 3 < 1 (\omega =
\surd 
5+1
2 ). Let x(0) \in \BbbR 2m and y

(0)
b \in \BbbR m be any given initial

vectors. Then the sequence \{ x(k) = (x
(k)
a , x

(k)
b )\} k\geq 1, generated by TSAA, satisfies

\| x(k+1)  - x\ast \| 2 \leq \rho \| x(k)
b  - x\ast 

b\| 2
for all k\geq 1, where

\rho =
3K\omega 3\mu (A)

2

\sqrt{}    \Biggl[ 
1+

\biggl( 
m\mu (A)

1 - K\mu (A)

\biggr) 2
\Biggr] \Biggl[ 

1+

\biggl( 
m\mu (A)

1 - 2K\mu (A)

\biggr) 2
\Biggr] \Biggl[ 

1 +

\biggl( 
3K\omega \mu (A)

2

\biggr) 2
\Biggr] 
,

(3.6)

which is strictly smaller than 1 under (3.5). Thus the sequence \{ x(k)\} k\geq 1 converges
to x\ast , the unique sparsest solution of the linear system.

Proof. Condition (3.5) implies K < 1
2 (1 + 1

\mu (A) ) (see Remark 3.1 for details)

which, by Lemma 3.5, ensures that x\ast = (x\ast 
a, x

\ast 
b) is the unique sparsest solution to

the system y = Ax. The vector y can be written as y = y\ast a + y\ast b , where y\ast a = \Phi ax
\ast 
a

and y\ast b =\Phi bx
\ast 
b . Given x(k) = (x

(k)
a , x

(k)
b ), TSAA generates x(k+1) = (x

(k+1)
a , x

(k+1)
b ) by

performing its steps S2-S4. Let x
(k)
a , x

(k)
b , \widetilde x(k)

a , \widetilde x(k)
b , u

(k)
a , u

(k)
b be defined as in TSAA.

Denote by z
(k)
a = \Phi T

a u
(k)
a and z

(k)
b = \Phi T

b u
(k)
b . We see from S2 that for all k \geq 1,

u
(k)
b +\Phi a\widetilde x(k)

a = y= y\ast a + y\ast b =\Phi ax
\ast 
a +\Phi bx

\ast 
b . Thus

z
(k)
b  - x\ast 

b =\Phi T
b u

(k)
b  - x\ast 

b =\Phi T
b (\Phi ax

\ast 
a +\Phi bx

\ast 
b  - \Phi a\widetilde x(k)

a ) - x\ast 
b

=\Phi T
b \Phi a(x

\ast 
a  - \widetilde x(k)

a ),(3.7)
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2316 YUN-BIN ZHAO AND ZHONG-FENG SUN

where the last equality follows from the orthogonality of \Phi b. From S2 of TSAA, we
see that for all k\geq 1, u

(k)
a + y

(k)
b = y=\Phi ax

\ast 
a +\Phi bx

\ast 
b and y

(k)
b =\Phi bx

(k)
b . Thus

z(k)a  - x\ast 
a =\Phi T

a u
(k)
a  - x\ast 

a =\Phi T
a (\Phi ax

\ast 
a +\Phi bx

\ast 
b  - \Phi bx

(k)
b ) - x\ast 

a

=\Phi T
a\Phi b(x

\ast 
b  - x

(k)
b ),(3.8)

where the last equality follows from the orthogonality of \Phi a. Denote by Sa = supp(x\ast 
a),

Sb = supp(x\ast 
b), \Omega 

(k)
a = supp(\widetilde x(k)

a ) = supp(\scrH K(z
(k)
a )) and \Omega 

(k)
b = supp(\widetilde x(k)

b ) =

supp(\scrH K(z
(k)
b )). Thus | \Omega (k)

a | , | \Omega (k)
b | \leq K. Denote by \Gamma 

(k)
b = supp(x

(k)
b ). Then, by (3.8)

and Lemma 3.1, one has

\| \widetilde x(k)
a  - x\ast 

a\| 2 = \| \scrH K(z(k)a ) - x\ast 
a\| 2

\leq \omega \| (z(k)a  - x\ast 
a)Sa\cup \Omega 

(k)
a
\| 2 = \omega \| [\Phi T

a\Phi b(x
\ast 
b  - x

(k)
b )]

Sa\cup \Omega 
(k)
a
\| 2

= \omega \| [(\Phi a)Sa\cup \Omega 
(k)
a

]T\Phi b(x
\ast 
b  - x

(k)
b )\| 2

= \omega \| [(\Phi a)Sa\cup \Omega 
(k)
a

]T (\Phi b)Sb\cup \Gamma 
(k)
b

(x\ast 
b  - x

(k)
b )

Sb\cup \Gamma 
(k)
b

\| 2,(3.9)

where the last equality follows from the fact supp(x\ast 
b - x

(k)
b )\subseteq supp(x\ast 

b)\cup supp(x
(k)
b ) =

Sb \cup \Gamma 
(k)
b . Note that every entry of the matrix M = [(\Phi a)Sa\cup \Omega 

(k)
a

]T (\Phi b)Sb\cup \Gamma 
(k)
b

is the

inner product of a column of \Phi a and a column of \Phi b. Thus the entries of this matrix
are bounded by \mu (A). Thus, by Lemma 3.2, we immediately have that

\| [(\Phi a)Sa\cup \Omega 
(k)
a

]T (\Phi b)Sb\cup \Gamma k
b
(x\ast 

b  - x
(k)
b )

Sa\cup \Gamma 
(k)
b

\| 2

\leq 1

2
(| Sa \cup \Omega (k)

a | + | Sb \cup \Gamma (k)
b | )\mu (A)\| (x\ast 

b  - x
(k)
b )

Sb\cup \Gamma 
(k)
b

\| 2

\leq (3K/2)\mu (A)\| x\ast 
b  - x

(k)
b \| 2,(3.10)

where the last inequality follows from the fact | Sa\cup \Omega (k)
a | +| Sb\cup \Gamma (k)

b | \leq | \Omega 
(k)
a | +| \Gamma (k)

b | +
| Sa| + | Sb| \leq 3K. Merging (3.9) and (3.10) yields

\| \widetilde x(k)
a  - x\ast 

a\| 2 \leq \omega \mu (A) (3K/2)\| x\ast 
b  - x

(k)
b \| 2.(3.11)

Similarly, by (3.7) and Lemmas 3.1, one has

\| \widetilde x(k)
b  - x\ast 

b\| 2 = \| \scrH K(z
(k)
b ) - x\ast 

b\| 2
\leq \omega \| (z(k)b  - x\ast 

b)Sb\cup \Omega 
(k)
b

\| 2

= \omega \| [\Phi T
b \Phi a(x

\ast 
a  - \widetilde x(k)

a )]
Sb\cup \Omega 

(k)
b

\| 2

= \omega \| [(\Phi b)Sb\cup \Omega 
(k)
b

]T (\Phi a)Sa\cup \Omega 
(k)
a

(x\ast 
a  - \widetilde x(k)

a )
Sa\cup \Omega 

(k)
a
\| 2.

By Lemmas 3.2, we have that

\| \widetilde x(k)
b  - x\ast 

b\| 2 \leq 
1

2
\omega \mu (A)

\Bigl( 
| Sb \cup \Omega (k)

b | + | Sa \cup \Omega k
a| 
\Bigr) 
\| (x\ast 

a  - \widetilde x(k)
a )

Sa\cup \Omega 
(k)
a
\| 2

\leq \omega \mu (A) (3K/2)\| x\ast 
a  - \widetilde x(k)

a \| 2,(3.12)

where the last inequality follows from | Sb\cup \Omega (k)
b | + | Sa\cup \Omega (k)

a | \leq | \Omega (k)
b | + | \Omega 

(k)
a | + | Sa| +

| Sb| \leq 3K. Merging (3.11) and (3.12) yields

\| \widetilde x(k)
b  - x\ast 

b\| 2 \leq [\omega \mu (A) (3K/2)]
2 \| x\ast 

b  - x
(k)
b \| 2.(3.13)
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SPLITTING ALTERNATING ALGORITHMS 2317

Denote by u =\scrH \tau (\widetilde x(k)), where \widetilde x(k) = (\widetilde x(k)
a , \widetilde x(k)

b ) and \tau is the integer number given
in TSAA. By Lemma 3.1, we have \| u - x\ast \| 2 \leq \omega \| (\widetilde x(k)  - x\ast )S\cup \Lambda \| 2 \leq \omega \| \widetilde x(k)  - x\ast \| 2,
where S = supp(x\ast ) and \Lambda = supp(u). Combing with (3.11) and (3.13) yields

\| u - x\ast \| 2 \leq \omega 2\mu (A) (3K/2)

\sqrt{} 
1 + [3K\omega \mu (A)/2]

2\| x(k)
b  - x\ast 

b\| 2.(3.14)

By the structure of TSAA, the 2K-sparse vector \widehat x(k) is the solution to the least-
squares problem (2.1). Note that supp(u)\subseteq \scrL \tau (\widetilde x(k))\subseteq \Lambda (k) =\scrL \tau (\widetilde x(k))\cup \scrL 2K - \tau (d

(k)),
where d(k) =AT (y - Ax(k)). Clearly, | \Lambda (k)| \leq 2K < 1

\mu (A) , where the second inequality

follows from (3.5). Thus it follows from Lemma 3.4 that

\| \widehat x(k)  - x\ast \| 2 \leq \rho 1\| (\widehat x(k)  - x\ast )
\Lambda (k)\| 2 = \rho 1\| (u - x\ast )

\Lambda (k)\| 2 \leq \rho 1\| u - x\ast \| 2,

where \rho 1 =
\sqrt{} 
1 + ( m\mu (A)

1 - 2K\mu (A) )
2, and the equality follows from (\widehat x(k))

\Lambda (k) = 0= (u)
\Lambda (k) .

Denote by v=\scrH K(\widehat x(k)). From Lemma 3.1 and the inequality above, we have

\| v - x\ast \| 2 \leq \omega \| (\widehat x(k)  - x\ast )S\cup S(k)\| 2 \leq \omega \rho 1\| u - x\ast \| 2,(3.15)

where S = supp(x\ast ) and S(k) = supp(v) with | S(k)| \leq K. As x(k+1) = (x
(k+1)
a , x

(k+1)
b )

is the solution to the problem (2.2), by Lemma 3.4, we deduce that

\| x(k+1)  - x\ast \| 2 \leq \rho 2\| (x(k+1)  - x\ast )
S(k)\| 2 = \rho 2\| (v - x\ast )

S(k)\| 2 \leq \omega \rho 1\rho 2\| u - x\ast \| 2,

where \rho 2 =
\sqrt{} 
1 + ( m\mu (A)

1 - K\mu (A) )
2, the equality is due to (x(k+1))

S(k) = 0 = (v)
S(k) , and

the last inequality follows from (3.15). Merging this inequality with (3.14) yields

\| x(k+1)  - x\ast \| 2 \leq \rho \| x(k)
b  - x\ast 

b\| 2,(3.16)

where

\rho := \omega 3\rho 1\rho 2\mu (A) (3K/2)

\sqrt{} 
1 + [3K\omega \mu (A)/2]

2
,

which is exactly the constant in (3.6). It is not difficult to verify that \rho < 1 under

(3.5). In fact, (3.5) implies that 1  - 2K\mu (A) > 0 and 3K\omega \mu (A)
2 < 1 which, together

with 1
1 - K\mu (A) <

1
1 - 2K\mu (A) , implies that

\rho 1\rho 2

\sqrt{} 
1 +

\biggl( 
3K\omega \mu (A)

2

\biggr) 2

<
\surd 
2

\Biggl[ 
1 +

\biggl( 
m\mu (A)

1 - 2K\mu (A)

\biggr) 2
\Biggr] 
.

Thus

\rho <
3
\surd 
2K\omega 3\mu (A)

2

\Biggl[ 
1 +

\biggl( 
m\mu (A)

1 - 2K\mu (A)

\biggr) 2
\Biggr] 
.

If m\mu (A)
1 - 2K\mu (A) \leq 1, then \rho \leq 3

\surd 
2K\omega 3\mu (A)< 1 under (3.5); otherwise, we have

\rho \leq 3
\surd 
2K\omega 3\mu (A)

\biggl( 
m\mu (A)

1 - 2K\mu (A)

\biggr) 2

\leq 3
\surd 
2K\omega 3\mu (A)3m2

(1 - c)2
< 1,

where the second inequality follows from 1 - 2K\mu (A)> 1 - c due to (3.5) which implies

2K\mu (A) < c < 1, and the last inequality is implied from (3.5). Since \| x\ast 
b  - x

(k)
b \| 2 \leq 
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2318 YUN-BIN ZHAO AND ZHONG-FENG SUN

\| x\ast  - x(k)\| 2, it follows from (3.16) that the sequence \{ x(k)\} converges to the sparse
solution x\ast of the linear system.

Remark 3.1. The above theorem shows that (3.5) is a sufficient condition for the
global convergence of TSAA. Note that

1

2\mu (A)
min

\Biggl\{ 
c,
c(1 - c)2

m2

\biggl( 
1

\mu (A)

\biggr) 2
\Biggr\} 
\leq c

2\mu (A)
<

1

2\mu (A)
<

1

2

\biggl( 
1 +

1

\mu (A)

\biggr) 
,

where c is the constant given in Theorem 3.6. Thus (3.5) is more conservative than the
one in Lemma 3.5. Given a matrix A, the right-hand side of (3.5) is easy to compute.
Clearly, the smaller the value of \mu (A), the larger the quantity of the right-hand side
of (3.5) and thus the broader the class of linear systems that satisfy (3.5).

4. Multiblock splitting alternating algorithm. In this section, we consider
the multiblock case where the matrix is formed by concatenating more than two
orthogonal matrices. For this case, the SAA is referred to as the multiblock splitting
alternating algorithm (MSAA) which is formally described as follows.

MSAA Input A= [\Phi 1, . . . ,\Phi p]\in \BbbR m\times pm, where p > 2 and \Phi i \in \BbbR m\times m, i= 1, . . . , p
are orthogonal matrices. Input y \in \BbbR m, sparsity level K, and integer number \tau such
that K \leq \tau \leq 2K.

S1 (Initialize) Give any initial point x(0) = (x
(0)
1 , . . . , x

(0)
p ) \in \BbbR pm and any initial

vectors y
(0)
i \in \BbbR m for i= 2, . . . , p. Set k := 0.

S2 Given vectors x(k) and y
(k)
i \in \BbbR m for i= 2, . . . , p, set u

(k)
1 = y - 

\sum p
j=2 y

(k)
j and

perform the following loop:
for i= 1, . . . , p - 1, do\widetilde x(k)
i =\scrH K(\Phi T

i u
(k)
i ); \widetilde y(k)i =\Phi i\widetilde x(k)

i ;u
(k)
i+1 = y - 

\sum i
j=1 \widetilde y(k)j  - 

\sum p
j=i+2 y

(k)
j

end
Set \widetilde x(k)

p =\scrH K(\Phi T
p u

(k)
p ).

S3 Let \widetilde x(k) = (\widetilde x(k)
1 , . . . , \widetilde x(k)

p ) and d(k) = AT (y  - Ax(k)). Set \Lambda (k) = \scrL \tau (\widetilde x(k)) \cup 
\scrL 2K - \tau (d

(k)) and\widehat x(k) = argmin
x\in \BbbR pm

\{ \| y - Ax\| 2 : supp(x)\subseteq \Lambda (k)\} .(4.1)

S4 Set S(k) =\scrL K(\widehat x(k)) and\Bigl( 
x
(k+1)
1 , . . . , x(k+1)

p

\Bigr) 
= x(k+1) := argmin

x\in \BbbR pm

\{ \| y - Ax\| 2 : supp(x)\subseteq S(k)\} .(4.2)

Set y
(k+1)
i =\Phi ix

(k+1)
i , i= 2, . . . , p. Replace k+1 by k, and repeat S2--S4 until

a stopping criterion is met.
The comment similar to Remark 2.1 is valid for MSAA. The loop at S2 iteratively

and alternately generates the intermediate point \widetilde x(k) = (\widetilde x(k)
1 , . . . , \widetilde x(k)

p ) from the cur-

rent one x(k). Starting with u
(k)
1 := y - 

\sum p
j=2 y

(k)
j , the algorithm generates \widetilde x(k)

1 , \widetilde y(k)1 ,

and u
(k)
2 , then \widetilde x(k)

2 , \widetilde y(k)2 and u
(k)
3 , and continues until u

(k)
p and \widetilde x(k)

p are generated at
the end of loop. The vectors

u
(k)
i = y - 

\sum 
j<i

\widetilde y(k)j  - 
\sum 
j>i

y
(k)
i , i= 1, . . . , p

can be seen as the approximation to the optimal partition y\ast 1 , . . . , y
\ast 
p of y, which

can be written as y\ast i = y  - 
\sum 

j<i y
\ast 
j  - 

\sum 
j>i y

\ast 
j , i = 1, . . . , p. It is also interesting

to note that when \tau = 2K, the algorithm does not use the gradient information
d(k) =AT (y - Ax(k)) of the metric \| y - Ax\| 22 at x(k). In this case, \Lambda (k) =\scrL 2K(\widetilde x(k)).
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SPLITTING ALTERNATING ALGORITHMS 2319

5. Analysis of MSAA. In this section, we show that under some condition, the
sequence generated by MSAA converges to the sparsest solution of the linear system.
Before stating the main result for MSAA, let us introduce the following norm of the
vector z = (z1, . . . , zp)\in \BbbR pm, where each zi \in \BbbR m:

\| z\| (p,\infty ) = max
1\leq i\leq p

\| zi\| 2,

which is helpful in the analysis of MSAA. We also need the following generalized
versions of Lemmas 3.3 and 3.4, respectively.

Lemma 5.1. Let A= [\Phi 1,\Phi 2, . . . ,\Phi p], where \Phi i \in \BbbR m\times m, i= 1, . . . , p are orthogo-
nal matrices. Let \Lambda \subseteq \{ 1, . . . , pm\} be an index set with | \Lambda | <m. Then for any vector
u\in \BbbR pm, one has\bigm\| \bigm\| [(ATA - I)u]\Lambda 

\bigm\| \bigm\| 
2
\leq \mu (A)

\biggl( 
| \Lambda | \cdot \| u\Lambda \| 2 +

1

2
pm\| u\Lambda \| 2

\biggr) 
,(5.1)

where \Lambda = \{ 1, . . . , pm\} \setminus \Lambda .
Note that every row of ATA - I contains at most (p - 1)m nonzero entries. Using

a proof similar to that of Lemma 3.3 will yield (5.1). The proof is omitted here.

Lemma 5.2. Let A = [\Phi 1, . . . ,\Phi p] \in \BbbR m\times pm, where \Phi i \in \BbbR m\times m, i = 1, . . . , p are
orthogonal matrices. Let x\ast be the K-sparse solution to the system y = Ax and
K < 1/\mu (A). Let \Lambda \subseteq \{ 1, . . . , pm\} be an index set with cardinality | \Lambda | satisfying
K \leq | \Lambda | < 1/\mu (A). Let z+ = argminz\in \BbbR pm\{ \| y - Az\| 2 : supp(z)\subseteq \Lambda \} . Then

\| z+  - x\ast \| 2 \leq 

\sqrt{} 
1 +

\biggl( 
pm\mu (A)

2(1 - | \Lambda | \mu (A))

\biggr) 2

\| (z+  - x\ast )\Lambda \| 2,(5.2)

where \Lambda = \{ 1, . . . , pm\} \setminus \Lambda .
Using Lemma 5.1 and the similar proof of Lemma 3.4, one can obtain the error

bound (5.2) immediately. The details are omitted.

Theorem 5.3. Let A= [\Phi 1, . . . ,\Phi p]\in \BbbR m\times pm, where \Phi i \in \BbbR m\times m, i= 1, . . . , p are
orthogonal matrices. Suppose that the linear system y = Ax has a K-sparse solution
x\ast \in \BbbR pm and

K <
1

\mu (A)
min

\Biggl\{ 
\tau 1,

\tau 2
m2

\biggl( 
1

\mu (A)

\biggr) 2
\Biggr\} 
,(5.3)

where \tau 1 = 2
\omega (1+2\omega 2(3p - 2)

\surd 
p) (< 1/5) and \tau 2 = 2(2 - \omega \tau 1)(1 - 3\tau 1)

2

\omega 3(3p - 2)p5/2 are constants with

\omega = (
\surd 
5 + 1)/2. Let x(0) \in \BbbR pm and y

(0)
i \in \BbbR m (i = 2, . . . , p) be any given initial

vectors. Then sequence \{ x(k)\} k\geq 1 generated by MSAA satisfies that

\| x(k+1)  - x\ast \| 2 \leq \eta \| x(k)  - x\ast \| (p,\infty ),

where \eta is a positive constant given as

\eta =
\omega 3K\mu (A)(3p - 2)

\surd 
p

2 - \omega K\mu (A)

\sqrt{}    \Biggl[ 
1 +

\biggl( 
pm\mu (A)

2(1 - 3K\mu (A))

\biggr) 2
\Biggr] \Biggl[ 

1 +

\biggl( 
pm\mu (A)

2(1 - K\mu (A))

\biggr) 2
\Biggr] 
< 1.

Thus the sequence \{ x(k)\} k\geq 1 converges to x\ast which, under (5.3), is the unique sparsest
solution to the linear system.
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2320 YUN-BIN ZHAO AND ZHONG-FENG SUN

Proof. Suppose that the sequence \{ x(k) = (x
(k)
1 , . . . , x

(k)
p )\} k\geq 1, with x

(k)
i \in \BbbR m,

is generated by MSAA. Let \{ \widetilde x(k), \widetilde y(k), \widehat x(k), x(k+1)\} be given as in MSAA. We now
prove that the sequence \{ x(k)\} k\geq 1 converges to x\ast . For notational convenience, we

define w
(k)
i =\Phi T

i u
(k)
i , i= 1, . . . , p, where u

(k)
i 's are the vectors generated at S2 of the

algorithm. We first provide an upper bound for \| \widetilde x(k)  - x\ast \| (p,\infty ). Note that

\| \widetilde x(k)  - x\ast \| (p,\infty ) = max
1\leq i\leq p

\| \widetilde x(k)
i  - x\ast 

i \| 2 = \| \widetilde x(k)
q  - x\ast 

q\| 2

for some q \in \{ 1, . . . , p\} . By the structure of MSAA, for all k\geq 1, one has \widetilde y(k)j =\Phi j\widetilde x(k)
j

for j = 1, . . . , p  - 1 and y
(k)
j = \Phi jx

(k)
j for j = 2, . . . , p. By definition, u

(k)
i = y  - \sum 

j<i \widetilde y(k)j  - 
\sum 

j>i y
(k)
j which, together with y = \Phi qx

\ast 
q +

\sum 
j<q \Phi jx

\ast 
j +

\sum 
j>q \Phi jx

\ast 
j ,

implies that

w(k)
q  - x\ast 

q =\Phi T
q u

(k)
q  - x\ast 

q =\Phi T
q

\left(  y - 
\sum 
j<q

\widetilde y(k)j  - 
\sum 
j>q

y
(k)
j

\right)   - x\ast 
q

=\Phi T
q

\left(  \Phi qx
\ast 
q +

\sum 
j<q

\Phi jx
\ast 
j +

\sum 
j>q

\Phi jx
\ast 
j  - 

\sum 
j<q

\Phi j\widetilde x(k)
j  - 

\sum 
j>q

\Phi jx
(k)
j

\right)   - x\ast 
q

=
\sum 
j<q

\Phi T
q \Phi j(x

\ast 
j  - \widetilde x(k)

j ) +
\sum 
j>q

\Phi T
q \Phi j(x

\ast 
j  - x

(k)
j ).(5.4)

Denote by Si = supp(x\ast 
i ) and \Omega 

(k)
i = supp(\widetilde x(k)

i ) = supp(\scrH K(w
(k)
i )) for i = 1, . . . , p.

Clearly, | \Omega (k)
i | \leq K for every i, and

\sum p
i=1 | Si| \leq K since x\ast = (x\ast 

1, . . . , x
\ast 
p) is K-sparse.

By using (5.4) and Lemma 3.1, we have

\| \widetilde x(k)  - x\ast \| (p,\infty ) = \| \widetilde x(k)
q  - x\ast 

q\| 2 = \| \scrH K(w(k)
q ) - x\ast 

q\| 2 \leq \omega \| (w(k)
q  - x\ast 

q)Sq\cup \Omega 
(k)
q
\| 2

\leq \omega 
\sum 
j<q

\| [\Phi T
q \Phi j(x

\ast 
j  - \widetilde x(k)

j )]
Sq\cup \Omega 

(k)
q
\| 2 + \omega 

\sum 
j>q

\| [\Phi T
q \Phi j(x

\ast 
j  - x

(k)
j ]

Sq\cup \Omega 
(k)
q
\| 2.(5.5)

We now bound the terms on the right-hand side of (5.5). Notice that for any j < q,

\| [\Phi T
q \Phi j(x

\ast 
j  - \widetilde x(k)

j )]
Sq\cup \Omega 

(k)
q
\| 2 = \| [(\Phi q)Sq\cup \Omega 

(k)
q

]T\Phi j(x
\ast 
j  - \widetilde x(k)

j )\| 2

= \| [(\Phi q)Sq\cup \Omega 
(k)
q

]T (\Phi j)Sj\cup \Omega 
(k)
j

(x\ast 
j  - \widetilde x(k)

j )
Sj\cup \Omega 

(k)
j
\| 2.

By Lemma 3.2, one has

\| [\Phi T
q \Phi j(x

\ast 
j  - \widetilde x(k)

j )]
Sq\cup \Omega 

(k)
q
\| 2 \leq 

1

2
(| Sq \cup \Omega (k)

q | + | Sj \cup \Omega (k)
j | )\mu (A)\| (x\ast 

j  - \widetilde x(k)
j )

Sj\cup \Omega 
(k)
j
\| 2

\leq 1

2
\mu (A)(2K + | Sq| + | Sj | )\| x\ast  - \widetilde x(k)\| (p,\infty ),(5.6)

where the last relation follows from | \Omega (k)
q | \leq K, | \Omega (k)

j | \leq K and the definition of

\| \cdot \| (p,\infty ). Denote by \Gamma 
(k)
i = supp(x

(k)
i ). Since x(k) is K-sparse, | \Gamma (k)

i | \leq K for every

i= 1, . . . , p. By the same analysis above and noting that supp(x\ast 
j  - x

(k)
j )\subseteq Sj \cup \Gamma (k)

i ,
for any j > q one has

\| [\Phi T
q \Phi j(x

\ast 
j  - x

(k)
j )]

Sq\cup \Omega 
(k)
q
\| 2 = \| [(\Phi q)Sq\cup \Omega 

(k)
q

]T (\Phi j)Sj\cup \Gamma 
(k)
j

(x\ast 
j  - x

(k)
j )

Sj\cup \Gamma 
(k)
j
\| 2

\leq 1

2
(| Sq \cup \Omega (k)

q | + | Sj \cup \Gamma (k)
j | )\mu (A)\| (x\ast 

j  - x
(k)
j )

Sj\cup \Gamma 
(k)
j
\| 2

\leq 1

2
\mu (A)(2K + | Sq| + | Sj | )\| x\ast  - x(k)\| (p,\infty ).(5.7)
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SPLITTING ALTERNATING ALGORITHMS 2321

Since | Sq| \leq K and
\sum 

j<q | Sj | \leq K, we see that\sum 
j<q

2K + | Sq| + | Sj | = (2K + | Sq| )(q - 1) +
\sum 
j<q

| Sj | \leq (3q - 2)K.(5.8)

Similarly, as
\sum 

j>q | Sj | \leq K, one has\sum 
j>q

2K + | Sq| + | Sj | = (2K + | Sq| )(p - q) +
\sum 
j>q

| Sj | \leq (3(p - q) + 1)K.(5.9)

Substituting (5.6) and (5.7) into (5.5) and using (5.8) and (5.9) yields

\| \widetilde x(k)  - x\ast \| (p,\infty ) \leq 
1

2
\omega \mu (A)

\Biggl[ \sum 
j<q

(2K + | Sq| + | Sj | )\| \widetilde x(k)  - x\ast \| (p,\infty )

+
\sum 
j>q

(2K + | Sq| + | Sj | )\| x(k)  - x\ast \| (p,\infty )

\Biggr] 

\leq 1

2
\omega K\mu (A)[(3q - 2)\| \widetilde x(k)  - x\ast \| (p,\infty ) + (3(p - q) + 1)\| x(k)  - x\ast \| (p,\infty )].(5.10)

As 1\leq q\leq p, we see that 1
2 (3q - 2)\omega K\mu (A)\leq 1

2 (3p - 2)\omega K\mu (A)\leq 1
2 (3p+1)\omega K\mu (A)<

1, where the last inequality follows from (5.3) which implies that

K\mu (A)< \tau 1 :=
2

\omega (1 + 2\omega 2(3p - 2)
\surd 
p)

<
2

\omega (1 + 3p)
<

1

5
,(5.11)

where \tau 1 <
2

\omega (1+3p) follows from the fact 2\omega 2(3p - 2)
\surd 
p > 3p for any positive integer

number p. Thus by merging terms, (5.10) can be written as

\| \widetilde x(k)  - x\ast \| (p,\infty ) \leq f(q)\| x(k)  - x\ast \| (p,\infty ).(5.12)

where

f(q) :=
1
2\omega K\mu (A)(3(p - q) + 1)

1 - 1
2\omega K\mu (A)(3q - 2)

\leq \rho := f(1) =
\omega K\mu (A)(3(p - 1) + 1)

2 - \omega K\mu (A)
.

The inequality above follows from that f(q) is decreasing over the interval [1, p]
provided 3p - 1

2 \omega K\mu (A) < 1 which is ensured since 3p+1
2 \omega K\mu (A) < 1 due to (5.11).

2 - \omega K\mu (A)> 0 is also implied from (5.11). Thus it follows from (5.12) that

\| \widetilde x(k)  - x\ast \| (p,\infty ) \leq \rho \| x(k)  - x\ast \| (p,\infty ).(5.13)

Let \Lambda =\scrL \tau (\widetilde x(k)) and u=\scrH \tau (\widetilde x(k)). Clearly, supp(u)\subseteq \Lambda . By Lemma 3.1, we have

\| u - x\ast \| 2 \leq \omega \| (\widetilde x(k)  - x\ast )S\cup \Lambda \| 2 \leq \omega \| \widetilde x(k)  - x\ast \| 2 \leq \omega 
\surd 
p\| \widetilde x(k)  - x\ast \| (p,\infty ),

where S = supp(x\ast ). Combing this relation with (5.13) yields

\| u - x\ast \| 2 \leq \omega \rho 
\surd 
p\| x(k)  - x\ast \| (p,\infty ).(5.14)

According to S3 of MSAA, \Lambda (k) =\scrL \tau (\widetilde x(k))\cup \scrL 2K - \tau (d
(k)). Noting that supp(u)\subseteq \Lambda \subseteq 

\Lambda (k) which implies that u
\Lambda (k) = 0. By the structure of MSAA, the 2K-sparse vector\widehat x(k) is the solution to the least-squares problem in (4.1). By using Lemma 5.2 and
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2322 YUN-BIN ZHAO AND ZHONG-FENG SUN

noting that | \Lambda (k)| \leq 2K < 1
\mu (A) , where the second inequality follows from (5.11) due

to K\mu (A)< 2/(\omega (1 + 3p))< 1/2, we have that

\| \widehat x(k)  - x\ast \| 2 \leq \rho 1\| (\widehat x(k)  - x\ast )
\Lambda (k)\| 2 = \rho 1\| (u - x\ast )

\Lambda (k)\| 2 \leq \rho 1\| u - x\ast \| 2,

where \rho 1 =
\sqrt{} 
1 + ( pm\mu (A)

2(1 - 2K\mu (A)) )
2, and the equality above follows from (\widehat x(k))

\Lambda (k) = 0=

(u)
\Lambda (k) . Denote by v =\scrH K(\widehat x(k)) = (\widehat x(k))S(k) , where S(k) = \scrL K(\widehat x(k)). It follows from

Lemma 3.1 and the above inequality that

\| v - x\ast \| 2 \leq \omega \| (\widehat x(k)  - x\ast )S\cup supp(v)\| 2 \leq \omega \rho 1\| u - x\ast \| 2.(5.15)

As supp(v) \subseteq S(k), we see that (v)
S(k) = 0. Notice that | S(k)| = K and x(k+1) =

(x
(k+1)
1 , . . . , x

(k+1)
p ) is the solution to (4.2), by Lemma 5.2 again, one has

\| x(k+1)  - x\ast \| 2 \leq \rho 2\| (x(k+1)  - x\ast )
S(k)\| 2 = \rho 2\| (v - x\ast )

S(k)\| 2 \leq \omega \rho 1\rho 2\| u - x\ast \| 2,

where \rho 2 =
\sqrt{} 

1 + ( pm\mu (A)
2(1 - K\mu (A)) )

2, the equality follows from (x(k+1))
S(k) = 0 = (v)

S(k) ,

and the last inequality from (5.15). Merging (5.14) and the inequality above yields

\| x(k+1)  - x\ast \| 2 \leq \omega 2\rho \rho 1\rho 2
\surd 
p\| x(k)  - x\ast \| (p,\infty ) = \eta \| x(k)  - x\ast \| (p,\infty ),(5.16)

where \eta := \omega 2\rho \rho 1\rho 2
\surd 
p. That is,

\eta =
\omega 3K\mu (A)(3p - 2)

\surd 
p

2 - \omega K\mu (A)

\sqrt{}    \Biggl[ 
1 +

\biggl( 
pm\mu (A)

2(1 - 2K\mu (A))

\biggr) 2
\Biggr] \Biggl[ 

1 +

\biggl( 
pm\mu (A)

2(1 - K\mu (A))

\biggr) 2
\Biggr] 
.

Thus from (5.16), to show x(k)\rightarrow x\ast , it is sufficient to verify that \eta < 1 under (5.3).
Since 1 - K\mu (A)> 1 - 2K\mu (A)> 0 which is ensured by (5.3), \eta is bounded as

\eta \leq 
\omega 3K\mu (A)(3p - 2)

\surd 
p

2 - \omega K\mu (A)

\Biggl[ 
1 +

\biggl( 
pm\mu (A)

2(1 - 2K\mu (A))

\biggr) 2
\Biggr] 
.

If pm\mu (A)
2(1 - 2K\mu (A)) \leq 1, then \eta \leq 2\omega 3K\mu (A)(3p - 2)

\surd 
p

2 - \omega K\mu (A) < 1, where the second inequality follows

from K\mu (A)< \tau 1 which is (5.11). If pm\mu (A)
2(1 - 3K\mu (A)) > 1, we have

\eta \leq 
2\omega 3K\mu (A)(3p - 2)

\surd 
p

2 - \omega K\mu (A)

\biggl( 
pm\mu (A)

2(1 - 2K\mu (A))

\biggr) 2

<
\omega 3K\mu (A)3(3p - 2)

\surd 
p(pm)2

2(2 - \omega \tau 1)(1 - 2\tau 1)2
,

(5.17)

which follows from 2 - \omega K\mu (A) \geq 2 - \omega \tau 1 > 0 and 1 - 2K\mu (A) \geq 1 - 2\tau 1 > 0 due to

K\mu (A)< \tau 1 and \tau 1 < 1/5< 2/\omega (by 5.11)). Define \tau 2 :=
2(2 - \omega \tau 1)(1 - 2\tau 1)

2

\omega 3(3p - 2)p2\surd p . Then (5.17)

can be written as \eta <K\mu (A)3m2/\tau 2 which is strictly less than 1 under the condition
in (5.3). Thus \eta < 1 is guaranteed by (5.3). From (5.16), we deduce that \{ x(k)\} k\geq 1

converges to x\ast . Since the right-hand side of (5.3) is lower than 1
2 (1+

1
\mu (A) ), x

\ast is the
unique sparsest solution to the linear system by Lemma 3.5.

Remark 5.1. (i) Theorems 3.6 and 5.3 are established for TSAA and MSAA,
respectively, for the first time. Conditions (3.5) and (5.3) can be satisfied when \mu (A)
is small and/or the sparsity level of x\ast is low. For example, let U denote the right-
hand side of (3.5). Clearly, U > 1 when \mu (A) is sufficiently small. In this case, let
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SPLITTING ALTERNATING ALGORITHMS 2323

x\ast be a K-sparse vector with K := \lfloor U\rfloor , and set y := Ax\ast as the measurements.
Then the system Ax = y will satisfy the condition in (3.5). (ii) Although this paper
focuses on problems involving concatenated square orthogonal matrices (where all
blocks \Phi i, i = 1, . . . , p, have the same number of columns), the algorithms presented
here can be extended to a more general setting where the splitting blocks are not
necessarily square. The extended algorithm and its convergence analysis would differ
significantly from those in this paper. A RIP-based convergence analysis might be
more convenient for the extended algorithms, which is a worthwhile future work.

Remark 5.2. TSAA and MSAA are shown to be convergent under (3.5) and (5.3),
respectively. Both assumptions pertain to the range of sparsity level, i.e., K < K\ast ,
where the bound K\ast depends on \mu (A). A larger bound K\ast implies that a wider
range of problems satisfy the assumption. Moreover, Theorems 3.6 and 5.3 both
characterize the decay speed of the error sequence \{ \| x(k) - x\ast \| 2\} in terms of the decay
ratio \rho and \eta , respectively. Clearly, a smaller decay ratio indicates faster algorithm
convergence. Theorem 3.6, established through a separate analysis, is not a special
case of Theorem 5.3 . It cannot be derived from the latter by merely setting p= 2. In
fact, Theorem 3.6 is more profound than Theorem 5.3 for p= 2 in two aspects: (3.5) is
more relaxed than (5.3), and the convergence speed claimed in Theorem 5.3 is slower
than that in Theorem 3.6. To elaborate, let us denote \tau 1 and \tau 2 in Theorem 5.3 as
\tau 1(p) and \tau 2(p), respectively, since they depend on p. Note that \tau 1(p) and \tau 2(p) are
strictly decreasing with respect to p\geq 2. Thus it is straightforward to verify that

max
p\geq 2

\tau 1(p) = \tau 1(2)<
c

2
,max
p\geq 2

\tau 2(p) = \tau 2(2)<
c

2
(1 - c)2,

where c=
\surd 
2

3\omega 3 with \omega =
\surd 
5+1
2 . This implies that for any p\geq 2,

min

\Biggl\{ 
\tau 1(p), \tau 2(p)

\biggl( 
1

m\mu (A)

\biggr) 2
\Biggr\} 
<min

\Biggl\{ 
c

2
,
c(1 - c)2

2

\biggl( 
1

m\mu (A)

\biggr) 2
\Biggr\} 
.

Consequently, (3.5) in Theorem 3.6 is more relaxed than (5.3) in Theorem 5.3 for
any p \geq 2. Furthermore, it can be verified that under (5.3), the decay ratio \rho in
Theorem 3.6 is strictly smaller than \eta in Theorem 5.3. Since \eta depends on p, we
denote it as \eta (p) which is strictly increasing in p. It is not difficult to verify that
under (5.3), \rho < 3

4
\surd 
2
\eta (2)< 3

4
\surd 
2
\eta (p) for any integer p > 2. This means the convergence

speed claimed in Theorem 5.3 is slower than that in Theorem 3.6. The analysis for
two-block case can be conducted more deeply, as only two blocks need to coordinate.
For this case, when the partition ya for one block is given, the partition yb = y - ya for
the other block is immediately determined. However, the analysis for the case p > 2
encounters much more challenges due to the increased uncertainty and complexity
associated with multiple-block coordination and observation partition between blocks.

6. Numerical experiments. The performance of our algorithms on synthetic
data is demonstrated and compared with existing ones, including IHT, HTP, SP,
CoSaMP, OMP, \ell 1-minimization, and FISTA with a fixed stepsize. Additionally,
the performance of TSAA on real magnetic resonance image (MRI) reconstruction is
demonstrated. In our experiments, \ell 1-minimization (\ell 1-min) is solved using CVX with
the `Mosek' solver [25]. The steplength in IHT and HTP is set to 1, as the columns
of A are normalized. The number of iterations for OMP is set to the sparsity level
K of the vector to be recovered. We use IT to denote the total number of iterations
performed by an algorithm. Initial simulations indicate that the success rate of our
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2324 YUN-BIN ZHAO AND ZHONG-FENG SUN

algorithms for locating the sparse solution of linear systems is insensitive to the choice
of initial points. Thus, we set x(0) = 0 (together with y

(0)
i = y/p for i = 2, . . . , p) as

the default initial point. The value of \tau (K \leq \tau \leq 2K) reflects how much gradient
information at the current iterate is used to reduce the error metric via the projection
in Step 3 of TSAA and MSAA. Initial simulations also indicate that using part of the
gradient information can enhance the performance of our algorithms. Thus we set
\tau =K as the default value for this parameter.

6.1. Performance on synthetic data. The Matlab codes`sprandn(n,1,d)' and
`orth(randn(m))' are used to generate the K-sparse vector x\ast \in \BbbR n and orthogonal
matrices \Phi i \in \BbbR m\times m(i = 1, . . . , p), where n = m \ast p and d = K/n \in (0,1). Such
vectors have at most K normally distributed nonzero elements, and \Phi i's are the
orthogonalized random Gaussian matrices. The performance of algorithms can be
evaluated by their success rate for recovering sparse vectors via accurate or inaccurate
measurements. In our experiments, the recovery criterion is set as

\| x(k)  - x\ast \| 2/\| x\ast \| 2 \leq 10 - 4.(6.1)

The recovery of x\ast is said to be successful if the vector x(k) generated by the algorithm
satisfies (6.1). The matrix A = [\Phi 1, . . . ,\Phi p] \in \BbbR m\times n is of size m = 1000 and n = pm
with p = 2 or 5. When the sparsity level K is pretty low, all algorithms mentioned
in this section can successfully recover the sparse vectors. Thus we only demonstrate
the performance of algorithms on the vectors with relatively high sparsity levels, i.e.,
K0 \leq K \leq Kmax, where K0 = 20 and Kmax > m/2. For every given sparsity level
K = K0 + 5i for i = 0,1, . . . , \lfloor Kmax - K0

5 \rfloor , we use 100 random examples of (A,x\ast ) to
evaluate the success rate of the algorithms.

6.1.1. Solving problems with just a few iterations. The first observation is
that our algorithms require only a few iterations to find the sparsest solution of a wide
range of underdetermined linear systems. In signal-recovery terms, our algorithms
can recover a broad range of sparse signals using just a few iterations. Here, we
demonstrate the results for TSAA in noiseless situations, while similar results are also
observed in noisy settings.The results for IT = 3,. . . , 7 are summarized in Figure 1(a),
which shows that all K-sparse vectors with K \leq 0.4 m are exactly recovered by TSAA
in just a few iterations. The range of problems that TSAA can solve broadens with
each additional iteration. We also observe that TSAA can solve a wider range of

20 60 100 140 180 220 260 300 340 380 420 460 500
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(a) TSAA: IT=3, 4, 5, 6, 7
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(b) Algorithms with IT=7

Fig. 1. Success rates for recovery with just a few iterations.
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SPLITTING ALTERNATING ALGORITHMS 2325

problems than several mainstream iterative methods (HTP, SP, CoSaMP) when using
the same number of their first few iterations. Their comparison is given in Figure 1(b),
where all algorithms are run for only 7 iterations.

6.1.2. Comparison of overall success rates and runtime. In our experi-
ments, the default maximum number of iterations for TSAA, MSAA, HTP, SP, and
CoSaMP is set to be 100; the parameter \lambda and the Lipschitz constant L in FISTA [3]
are set to be \lambda = 4\times 10 - 5 and L= \lambda max(A

TA) (the largest eigenvalue of ATA); IHT
and FISTA are allowed to perform up to 3000 iterations due to their slow convergence.
From a practical point of view, it is more sensible to evaluate the performance of the
algorithms in noisy situations. Thus we take the measurements y :=Ax\ast + \epsilon h, where
h \in \BbbR m is a standard Gaussian noise vector and \epsilon > 0 is the noise level. We stop the
algorithm when \| x(k) - x(k - 1)\| 2/\| x(k)\| 2 \leq 10 - 8 or the prescribed maximum number
of iterations whichever is first reached and then adopt (6.1) to decide whether the
recovery of x\ast is successful.

In this experiment, the success rate of each algorithm for a given K is deter-
mined using 100 random problem instances. The performance of TSAA and MSAA,
compared to several existing algorithms, is summarized in Figure 2. The result in
Figure 2(a) is obtained under the noise level \epsilon = 5 \times 10 - 5, while Figure 2(b) is ob-
tained under \epsilon = 3\times 10 - 5. The results indicate that \ell 1-min and FISTA are severely
affected by the given noise levels. From Figure 2(a), the success rates of IHT and
CoSaMP drop to 35\% when K/m is close to 0.4, but TSAA continues to succeed even
asK/m approaches 0.5. This demonstrates that TSAA significantly outperforms IHT,
CoSaMP, \ell 1-min, and FISTA and is comparable to HTP, SP, and OMP. Figure 2(b)
shows that MSAA with p = 5 remains very robust with an overall performance bet-
ter than OMP and comparable to HTP and SP. This experiment indicates that our
algorithms are stable, as their performance is not very sensitive to changes in noise
levels or the measurement rate m/n which, however, severely affect the performance
of IHT, \ell 1-min, FISTA, and OMP.

The CPU time spent in these experiments is given in Figure 3. Figure 3(a)
shows that TSAA consumes remarkably less time than FISTA, \ell 1-min, and OMP to
achieve the same recovery criterion (6.1), but spends slightly more time than HTP.
The runtime is also lower than that of SP, CoSaMP, and IHT as K increases. Similar
results are observed for MSAA with p= 5, as shown in Figure 3(b).
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(a) p = 2 and ε = 5× 10−5
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(b) p = 5 and ε = 3× 10−5

Fig. 2. Comparison of success rates for vector recovery. (a) Two-block case. (b) Five-block case.
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(a) p = 2 and ε = 5× 10−5
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Fig. 3. Comparison of CPU time (in seconds) spent by algorithms to achieve recovery success.
(a) Two-block case. (b) Five-block case.

6.2. Reconstruction of MRI images. Two brain MRI images, Image 1 and
Image 2, of size 192\times 174 are reconstructed using TSAA and several existing methods
for comparison. We represent the original MRI image by concatenating its columns
into a vector x\ast \in \BbbR n with n = 33408. The coefficient vector c\ast \in \BbbR n of x\ast under
the discrete wavelet transform W(\cdot ) is used, where W is based on the wavelet`db1'
with 6 levels and periodic extension mode. Specifically, c\ast = W(x\ast ), which is often
compressible. We obtain the accurate measurements y := Ac\ast , where A \in \BbbR m\times n

(m = n/2) is constructed by concatenating two orthogonal matrices. Our goal is to
generate a K-sparse vector \^c \in \BbbR n, which is the best K-term approximation to c\ast .
We set K =m/3 for TSAA, IHT, HTP, SP, and CoSaMP. The reconstructed image
\^x\in \BbbR n is then obtained by \^x=W - 1(\^c), where W - 1 is the inverse of W. The quality
of the reconstructed image is assessed using the peak signal-to-noise ratio (PSNR):
PSNR = 10 \cdot log10(2552/MSE), where MSE denotes the mean-squared error between
the original and reconstructed images.

The original MRI images and those reconstructed by TSAA are shown in Figure 4.
The first column displays the original images, while the other three columns present
the reconstructed images with IT = 1, 4, and 9 iterations, respectively. Clearly, the
quality of the reconstructed images is significantly enhanced with each additional few
iterations of TSAA. As expected, TSAA achieves high-quality reconstruction with
very few iterations. Furthermore, it is interesting to observe how the PSNR improves
as IT increases. The results are displayed in Figures 5(a) and 5(c). From Figure 5(a),
the PSNR of TSAA rapidly reaches its peak values within only 10 iterations, sur-
passing other algorithms by at least 6 dB. For IT \geq 24, the PSNRs of SP, HTP, and
CoSaMP gradually approach their maximum values. Even when IT is increased to
40, none of the other algorithms exceed the PSNR of TSAA. Additionally, the PSNRs
of IHT and FISTA improve very slowly with increasing IT, requiring a large number
of iterations to achieve a certain level of reconstruction quality. Similar results are
shown for Image 2 in Figure 5(c).

Finally, let us compare the time required by the algorithms to achieve a prescribed
PSNR. Specifically, we aim to determine how long each algorithm takes to reach a
desired PSNR level. The results for Image 1 are shown in Figure 5(b), and those
for Image 2 are in Figure 5(d). For Image 1, the PSNR values range from 18 to
34, while for Image 2, they range from 18 to 32, both with a step size of 0.25. In
both Figure 5(b) and Figure 5(d), the fixed values on the far right of each curve
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(a) Image 1(Original) (b) IT=1 (c) IT=4 (d) IT=9

(e) Image 2(Original) (f) IT=1 (g) IT=4 (h) IT=9

Fig. 4. Reconstructed images by performing TSAA just a few iterations: IT=1, 4, 9. (Original
Image 1 and Image 2 courtesy of the Shandong Zibo Central Hospital.)
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(b) CPU time vs PSNR
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Fig. 5. (a) and (c): Comparison of PSNR (in dB) vs the number of iterations performed. (b)
and (d): Comparison of CPU time (in seconds) vs PSNR (in dB). The first row corresponds to
Image 1, and the second to Image 2.
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indicate that the algorithm reached the prescribed maximum number of iterations
without achieving the target PSNR. From Figure 5(b), it is evident that TSAA can
reconstruct Image 1 up to approximately PSNR = 33.5 within 100 iterations. Only
TSAA and SP can achieve PSNR values in the range [32.5, 33.5], with TSAA being
significantly faster than SP. For PSNR \leq 32.5, TSAA is much faster than the other
existing methods except for HTP, which is faster than TSAA when PSNR is below
32.5. However, HTP cannot achieve PSNR values above this threshold. CoSaMP and
IHT can only reconstruct Image 1 up to PSNR = 23, even when IHT is allowed to
perform 3000 iterations. The results for Image 2 in Figure 5(d) are similar to those for
Image 1, except that FISTA can achieve PSNR = 32 for this image, which is better
than the other algorithms. However, FISTA is much slower than TSAA in reaching
the PSNR up to 31.

7. Conclusions. The splitting alternating algorithms for finding sparse solu-
tions of underdetermined linear systems have been proposed. These algorithms are
specifically tailored for large-scale linear systems involving concatenated orthogonal
matrices. Their global convergence has been established under a mutual-coherence-
type condition. Numerical results demonstrate that the proposed algorithms can suc-
cessfully identify the sparse solution for a wide range of linear systems, often within
just a few iterations.

Reproducibility of computational results. This paper has been awarded the
``SIAM Reproducibility Badge: Code and data available"" as a recognition that the
authors have followed reproducibility principles valued by SIMAX and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://zhongfengsun.github.io/.
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